DOE
Associated Constructors
DOE
Syntax: DOE
Columns
Factor
Syntax: obj << Factor( column(s) )
Response
Syntax: obj << Response( column(s) )
X
Syntax: obj << X( column(s) )
Y
Syntax: obj << Y( column(s) )
Item Messages
A-Optimality Parameter Weights
Syntax: obj << A-Optimality Parameter Weights
Description: Sets the weights to be used for creating an A-optimal design.
JMP Version Added: 14
DOE(
Custom Design,
{Add Factor( Continuous, -1, 1, "X1", 0 ), Add Factor( Continuous, -1, 1, "X2", 0 ),
Add Factor( Continuous, -1, 1, "X3", 0 ), Add Term( {1, 0} ), Add Term( {1, 1} ),
Add Term( {2, 1} ), Add Term( {3, 1} ), Add Term( {1, 1}, {2, 1} ),
Add Term( {1, 1}, {3, 1} ), Add Term( {2, 1}, {3, 1} ), Set Sample Size( 14 ),
Optimality Criterion( "Make A-Optimal Design"n ),
"A-Optimality Parameter Weights"n( [1 1 1 1 0.1 0.1 0.1] )}
);
ALT Factor Settings
Syntax: obj << ALT Factor Settings
Description: For the given factor number in an accelerated life test plan, allows specification of factor name, number of levels, factor transformation, usage conditions and test conditions.
DOE(
Accelerated Life Test Plan,
{ALT Plan Setup( 1 ), Set Monitoring Choice( "Continuous Monitoring" ),
ALT Optimality Criterion( "Make Quantile Estimate Optimal" ),
ALT Factor Settings( 1, {"X1", 3, 1, 20, 30, 90, 110} ),
Set Level Values( 1, [90 100 110] ), Distribution Choice( LogNormal ),
Set Prior Mean ALT( [-40 1.5 2] ), Set Prior Std Error ALT( [10, 0.2, 0.5] ),
Set Prior Correlation ALT( [1 -0.99 0, -0.99 1 0, 0 0 1] ), Use Prior Uncertainty( 1 ),
Set ALT Time Range( 10000, 20000 ), Set ALT Probability of Interest( 0.1 ),
Set Length of Test( 1000 ), Set Number of Units( 150 )}
);
ALT Plan Setup
Syntax: obj << ALT Plan Setup( 1|2|3 )
Description: Specifies the initial choice of model for an accelerated life test plan.
DOE(
Accelerated Life Test Plan,
{ALT Plan Setup( 1 ), Set Monitoring Choice( "Continuous Monitoring" ),
ALT Optimality Criterion( "Make Quantile Estimate Optimal" ),
ALT Factor Settings( 1, {"X1", 3, 1, 20, 30, 90, 110} ),
Set Level Values( 1, [90 100 110] ), Distribution Choice( LogNormal ),
Set Prior Mean ALT( [-40 1.5 2] ), Set Prior Std Error ALT( [10, 0.2, 0.5] ),
Set Prior Correlation ALT( [1 -0.99 0, -0.99 1 0, 0 0 1] ), Use Prior Uncertainty( 1 ),
Set ALT Time Range( 10000, 20000 ), Set ALT Probability of Interest( 0.1 ),
Set Length of Test( 1000 ), Set Number of Units( 150 )}
);
Add Alias Term
Syntax: obj << Add Alias Term
Description: Adds an alias term to the list of alias terms. Specify the factor number and power for each effect in a list. Create interactions by separating effects with commas.
d = DOE(
Custom Design,
Add Factor( Continuous, -1, 1, "X1", 0 ),
Add Factor( Continuous, -1, 1, "X2", 0 )
);
d << Add Alias Term( {1, 1}, {2, 1} );
d << Add Alias Term( {1, 2} );
Add Constraint
Syntax: obj << Add Constraint
Description: Adds linear constraints through a matrix. Each row represents a constraint. The last column is for values on the right side of the inequality constraints. In JSL, the inequality constraints must be less than or equal to the values on the right.
DOE(
Custom Design,
Add Factor( Continuous, -1, 1, "X1", 0 ),
Add Factor( Continuous, -1, 1, "X2", 0 ),
Add Factor( Continuous, -1, 1, "X3", 0 ),
Add Constraint( [1 1 0 1, 1 0 1 1] ),
Add Term( {1, 0} )
);
Add Factor
Syntax: obj << Add Factor( Continuous|Discrete Numeric|Blocking|Constant|Categorical|Mixture )
Description: Adds a factor of the specified type and optional arguments. If nothing is specified, this command adds a continuous factor.
d = DOE( Custom Design );
d << Add Factor( Continuous, -1, 1, "X1", 0 );
d << Add Factor( Discrete Numeric, {1, 2, 3}, "X2", 0 );
d << Add Factor( Categorical, {"L1", "L2"}, "X3", 0 );
d << Add Factor( Blocking, 8, "X4" );
d << Add Factor( Constant, 3, "X5" );
Add Functional Response
Syntax: obj << Add Functional Response
Description: Adds a functional response with the specified name, number of measurements per run, and values.
JMP Version Added: 15
DOE(
Custom Design,
Add Response( Maximize, "Y", ., ., . ),
Add Functional Response( "Y", 5, {1, 2, 3, 4, 5} ),
Set Random Seed( 46055034 ),
Simulate Responses( 0 ),
Save X Matrix( 0 )
);
Add Potential Term
Syntax: obj << Add Potential Term
Description: Adds an If Possible term to the list of model terms. Specify the factor number and power for each effect in a list. Create interactions by separating effects with commas.
d = DOE(
Custom Design,
Add Factor( Continuous, -1, 1, "X1", 0 ),
Add Factor( Continuous, -1, 1, "X2", 0 )
);
d << Add Potential Term( {1, 1}, {2, 1} );
d << Add Potential Term( {1, 2} );
Add Response
Syntax: obj << Add Response( goal, name, lower limit, upper limit, importance, lower detection limit, upper detection limit )
Description: Adds a response with the specified goal, name, lower limit, upper limit, and importance.
Example 1
DOE( Custom Design, Add Response( Match Target, "Y", 10, 30, 1 ) );
Example 2
DOE( Custom Design, Add Response( Match Target, "Y", ., ., 1, 10, 30 ) );
Add Term
Syntax: obj << Add Term
Description: Adds a "Necessary" term to list of the model terms. Effects are specified by {factor number, power}. Interactions can be created by separating effects by commas.
d = DOE(
Custom Design,
Add Factor( Continuous, -1, 1, "X1", 0 ),
Add Factor( Continuous, -1, 1, "X2", 0 )
);
d << Add Term( {1, 1}, {2, 1} );
d << Add Term( {1, 2} );
Additional Designs
Syntax: obj << Additional Designs
Description: Specify up to nine additional designs to be compared to the reference design.
JMP Version Added: 14
DOE(
Custom Design,
Add Factor,
Add Factor,
Add Factor,
Set Sample Size( 12 ),
Make Design,
Make Table
);
DOE( Custom Design, Add Factor, Add Factor, Add Factor, Make Design, Make Table );
DOE(
Custom Design,
Add Factor,
Add Factor,
Add Factor,
Set Sample Size( 4 ),
Make Design,
Make Table
);
DOE(
Compare Designs,
Reference Design( "Custom Design", X( :X1, :X2, :X3 ) ),
Additional Designs(
"Custom Design 2",
X( :X1, :X2, :X3 ),
"Custom Design 3",
X( :X1, :X2, :X3 )
)
);
Allow covariate rows to be repeated
Syntax: obj << Allow covariate rows to be repeated( state=0|1 )
Description: Specifies if covariate rows are allowed to be repeated in the design.
JMP Version Added: 16
dt = Open( "$SAMPLE_DATA/Big Class.jmp" );
DOE(
Custom Design,
Add Response( Maximize, "Y", ., ., . ),
Add Factor( Covariate, :sex, 0 ),
Add Factor( Covariate, :height, 0 ),
Add Factor( Covariate, :weight, 0 ),
Add Term( {1, 0} ),
Add Term( {1, 1} ),
Add Term( {2, 1} ),
Add Term( {3, 1} ),
Enforce Use of Selected Covariate Rows( 1 ),
Allow covariate rows to be repeated( 1 ),
Select Covariate Rows( [1 2 3 4] ),
Set Sample Size( 24 )
);
Augment Method
Syntax: obj << Augment Method( Replicate|Centerpoints|Fold Over|Add Axial|Augment )
Description: Specifies the type of augment method and its parameters.
Example 1
dt = Open( "$SAMPLE_DATA/Design Experiment/Bounce Data.jmp" );
d = DOE( Augment Design, X( :Silica, :Sulfur, :Silane ), Y( :Stretch ) );
d << Augment Method( Augment );
d << Set Sample Size( 24 );
d << Make Design;
Example 2
dt = Open( "$SAMPLE_DATA/Design Experiment/2x3x4 Factorial.jmp" );
d = DOE( Augment Design, X( :X1, :X2, :X3 ), Y( :Y ) );
d << Augment Method( Replicate, 2 );
Example 3
dt = Open( "$SAMPLE_DATA/Design Experiment/Bounce Data.jmp" );
d = DOE( Augment Design, X( :Silica, :Sulfur, :Silane ), Y( :Stretch ) );
d << Augment Method( Centerpoints, 3 );
Example 4
dt = Open( "$SAMPLE_DATA/Design Experiment/Bounce Data.jmp" );
d = DOE( Augment Design, X( :Silica, :Sulfur, :Silane ), Y( :Stretch ) );
d << Augment Method( Fold Over, [1 2] );
Example 5
dt = Open( "$SAMPLE_DATA/Design Experiment/Bounce Data.jmp" );
d = DOE( Augment Design, X( :Silica, :Sulfur, :Silane ), Y( :Stretch ) );
d << Augment Method( Add Axial, 1, 2 );
Blocks
Syntax: obj << Blocks
Description: Specifies the block size for a balanced incomplete block design (BIBD).
JMP Version Added: 14
d = DOE( Balanced Incomplete Block Design, Treatments( 3, {"L1", "L2", "L3"} ) );
d << Blocks( 2 );
d << Make Design;
Center Points
Syntax: obj << Center Points
Description: Specifies the number of center points.
Example 1
d = DOE(
Custom Design,
Add Factor( Continuous, -1, 1, "X1", 0 ),
Add Factor( Continuous, -1, 1, "X2", 0 )
);
d << Make Model( Linear );
d << Center Points( 2 );
Example 2
DOE(
Definitive Screening Design,
Add Factor,
Add Factor,
Add Factor,
Add Factor,
Add Factor,
Add Factor,
Show Blocking Options( 1, 2 ),
Number of Extra Runs( 4 ),
Center Points( 1 )
);
Change Anticipated Coefficients
Syntax: obj << Change Anticipated Coefficients
Description: Change the Anticipated Coefficients in Power Analysis.
dt = Open( "$SAMPLE_DATA/Design Experiment/Bounce Data.jmp" );
d = DOE( Evaluate Design, X( :Silica, :Sulfur, :Silane ), Y( :Stretch ) );
d << Change Anticipated Coefficients( [1 2 3 4 2 2 2 3 3 3] );
Change Factor Settings
Syntax: obj << Change Factor Settings
Description: Specifies the minimum, maximum, and name of the continuous or mixture factor that you included in the first argument. Most useful for platforms that initially have predefined factors.
Example 1
d = DOE( Response Surface Design );
d << Change Factor Settings( 1, 2, 3, "A" );
d << Change Factor Settings( 2, 0, 4 );
Example 2
d = DOE( Mixture Design );
d << Change Factor Settings( 1, 0.1, 0.4, "A" );
d << Change Factor Settings( 3, 0, 0.8, "C" );
Check Inscribe
Syntax: obj << Check Inscribe
Description: Rescales the design so that axial points are at the low and high ends of the range.
d = DOE( Response Surface Design, Make Design( 2 ) );
d << Set Axial Choice( 2 );
d << Check Inscribe;
Choice Design Table Output
Syntax: obj << Choice Design Table Output( "Separate"|"Combined" )
Description: Specifies how to create a data table for a choice design.
DOE(
Choice Design,
{Add Factor( Categorical, {"L1", "L2"}, "X1", 0 ),
Add Factor( Categorical, {"L1", "L2"}, "X2", 0 ), Add Term( {1, 1} ), Add Term( {2, 1} ),
Set Prior Mean Choice( [0 0] ), Set Prior Variance Matrix( [1 0, 0 1] ),
Set Number of Attributes( 2 ), Set Number of Profiles( 2 ),
Set Number of Choice Sets( 8 ), Set Number of Surveys( 1 ),
Set Expected Number of Respondents( 1 ), Make Design,
Choice Design Table Output( Combined )}
);
D Efficiency Weight
Syntax: obj << D Efficiency Weight
Description: Use this option to control the relative importance of D-efficiency and reduction of aliasing. Supply a number between zero and one.
DOE(
Custom Design,
Add Factor( Continuous, -1, 1, "X1", 0 ),
Add Factor( Continuous, -1, 1, "X2", 0 ),
D Efficiency Weight( 0.5 ),
Make Design
);
Design Search Time
Syntax: obj << Design Search Time( number )
Description: Specifies the number of seconds to search for a design.
DOE(
Custom Design,
{Add Factor( Continuous, -1, 1, "X1", 0 ), Add Factor( Continuous, -1, 1, "X2", 0 ),
Set Sample Size( 7 ), Design Search Time( 8 ), Make Design}
);
Disallowed Combinations
Syntax: obj << Disallowed Combinations
Description: Enables you to supply a script that returns true for any factor combinations that should be excluded from your design.
DOE(
Custom Design,
Add Factor( Continuous, -1, 1, "X1", 0 ),
Add Factor( Categorical, {"L1", "L2"}, "X2", 0 ),
Number of Starts( 100 ),
Disallowed Combinations( X1 > 0.5 & X2 == 2 ),
Make Design
);
Discrete Numeric Powers Set to Necessary
Syntax: obj << Discrete Numeric Powers Set to Necessary( state=0|1 )
Description: Specifies if powers in discrete numeric factors should be necessary model terms.
DOE(
Custom Design,
Add Factor( Discrete Numeric, {1, 2, 3}, "X1", 0 ),
Add Factor( Discrete Numeric, {1, 2, 3}, "X2", 0 ),
Discrete Numeric Powers Set to Necessary( 1 ),
Make Model( Linear )
);
Distribution Choice
Syntax: obj << Distribution Choice
Description: Specifies the distribution for an accelerated life test plan.
DOE(
Accelerated Life Test Plan,
{ALT Plan Setup( 1 ), Set Monitoring Choice( "Continuous Monitoring" ),
ALT Optimality Criterion( "Make Quantile Estimate Optimal" ),
ALT Factor Settings( 1, {"X1", 3, 1, 20, 30, 90, 110} ),
Set Level Values( 1, [90 100 110] ), Distribution Choice( LogNormal ),
Set Prior Mean ALT( [-40 1.5 2] ), Set Prior Std Error ALT( [10, 0.2, 0.5] ),
Set Prior Correlation ALT( [1 -0.99 0, -0.99 1 0, 0 0 1] ), Use Prior Uncertainty( 1 ),
Set ALT Time Range( 10000, 20000 ), Set ALT Probability of Interest( 0.1 ),
Set Length of Test( 1000 ), Set Number of Units( 150 )}
);
Enforce Use of Selected Covariate Rows
Syntax: obj << Enforce Use of Selected Covariate Rows( state=0|1 )
Description: Specifies if all selected covariate rows should be included in the design.
JMP Version Added: 16
dt = Open( "$SAMPLE_DATA/Big Class.jmp" );
DOE(
Custom Design,
Add Response( Maximize, "Y", ., ., . ),
Add Factor( Covariate, :sex, 0 ),
Add Factor( Covariate, :height, 0 ),
Add Factor( Covariate, :weight, 0 ),
Add Term( {1, 0} ),
Add Term( {1, 1} ),
Add Term( {2, 1} ),
Add Term( {3, 1} ),
Enforce Use of Selected Covariate Rows( 1 ),
Allow covariate rows to be repeated( 1 ),
Select Covariate Rows( [1 2 3 4] ),
Set Sample Size( 24 )
);
FFF Optimality Criterion
Syntax: obj << FFF Optimality Criterion( "MaxPro"|"Centroid" )
Description: Specifies the criterion used in the design. Recommended is the default value.
Example 1
DOE(
Custom Design,
Add Factor( Continuous, -1, 1, "X1", 0 ),
Add Factor( Continuous, -1, 1, "X2", 0 ),
Add Factor( Continuous, -1, 1, "X3", 0 ),
Optimality Criterion( "Make I-optimal Design" ),
Make Design
);
Example 2
DOE(
Custom Design,
Add Factor( Continuous, -1, 1, "X1", 0 ),
Add Factor( Continuous, -1, 1, "X2", 0 ),
Add Factor( Continuous, -1, 1, "X3", 0 ),
Optimality Criterion( 2 ),
Make Design
);
Find Subset
Syntax: obj << Find Subset
Description: Finds the D-optimal subset of an Extreme Vertices design.
d = DOE( Mixture Design, Add Factor( Mixture, 0.1, 1, "X4", 0 ) );
d << Mixture Design Type( Extreme Vertices, 3 );
d << Find Subset( 10 );
GOSSDDetails
Syntax: obj << GOSSDDetails
Description: Returns the current factor settings as a list.
JMP Version Added: 15
d = DOE( Group Orthogonal Supersaturated Design );
Show( d << GOSSDDetails );
GOSSDStructure
Syntax: obj << GOSSDStructure
Description: Specifies the structure of a GOSSD
JMP Version Added: 15
d = DOE( Group Orthogonal Supersaturated Design );
d << GOSSDStructure( 6, 8 );
Get Alias Matrix
Syntax: obj << Get Alias Matrix
Description: Returns the alias matrix from design evaluation.
dt = Open( "$SAMPLE_DATA/Design Experiment/Bounce Data.jmp" );
d = DOE( Evaluate Design, X( :Silica, :Sulfur, :Silane ), Y( :Stretch ) );
d << Get Alias Matrix;
Get Design Diagnostics
Syntax: obj << Get Design Diagnostics
Description: Return D-Efficiency, G-Efficiency, A-Efficiency and Average Variance of Prediction.
dt = Open( "$SAMPLE_DATA/Design Experiment/Bounce Data.jmp" );
d = DOE( Evaluate Design, X( :Silica, :Sulfur, :Silane ), Y( :Stretch ) );
d << Get Design Diagnostics;
Get Effect Power
Syntax: obj << Get Effect Power
Description: Return vector of powers for effect estimates.
dt = Open( "$SAMPLE_DATA/Design Experiment/2x3x4 Factorial.jmp" );
d = DOE( Evaluate Design, X( :X1, :X2, :X3 ), Y( :Y ) );
d << Get Effect Power;
Get Estimation Efficiencies
Syntax: obj << Get Estimation Efficiencies
Description: Returns a vector for the increased width of each parameter estimate compared to an ideal design.
dt = Open( "$SAMPLE_DATA/Design Experiment/Bounce Data.jmp" );
d = DOE( Evaluate Design, X( :Silica, :Sulfur, :Silane ), Y( :Stretch ) );
d << Get Estimation Efficiencies;
Get MaxPro Values
Syntax: obj << Get MaxPro Values
Description: Returns the MaxPro values for a fast-flexible design, including any subdesigns based on levels of a categorical factor.
JMP Version Added: 14
d = DOE(
Space Filling Design,
{Add Factor( Continuous, -1, 1, "X1", 0 ), Add Factor( Continuous, -1, 1, "X2", 0 ),
Add Factor( Categorical, {"L1", "L2", "L3", "L4"}, "X3", 0 ),
FFF Optimality Criterion( MaxPro ), MaxPro Categorical Weight( 4 ),
Space Filling Design Type( Fast Flexible Filling, 100 )}
);
d << Get MaxPro Values;
Get Number of Random Starts
Syntax: obj << Get Number of Random Starts
Description: Returns the number of random starts used in design generation.
JMP Version Added: 15
Get Power
Syntax: obj << Get Power
Description: Return vector of powers for parameter estimates.
dt = Open( "$SAMPLE_DATA/Design Experiment/Bounce Data.jmp" );
d = DOE( Evaluate Design, X( :Silica, :Sulfur, :Silane ), Y( :Stretch ) );
d << Get Power;
Get Prediction Variances
Syntax: obj << Get Prediction Variances
Description: Returns the vector of prediction variances from the Fraction of Design Space Plot.
JMP Version Added: 14
d = DOE(
Custom Design,
{Add Factor( Continuous, -1, 1, "X1", 0 ), Add Factor( Continuous, -1, 1, "X2", 0 ),
Set Sample Size( 7 ), Design Search Time( 8 ), Set Number of FDS points( 20000 ),
Make Design}
);
d << Get Prediction Variances;
Get X Matrix
Syntax: obj << Get X Matrix
Description: Returns the design matrix (also called the X matrix).
dt = Open( "$SAMPLE_DATA/Design Experiment/Bounce Data.jmp" );
d = DOE( Evaluate Design, X( :Silica, :Sulfur, :Silane ), Y( :Stretch ) );
d << Get X Matrix;
Group New Runs Into Separate Block
Syntax: obj << Group New Runs Into Separate Block
Description: Adds a blocking factor, which groups new runs into separate blocks when augmenting a design.
dt = Open( "$SAMPLE_DATA/Design Experiment/Bounce Data.jmp" );
d = DOE( Augment Design, X( :Silica, :Sulfur, :Silane ), Y( :Stretch ) );
d << Group New Runs Into Separate Block;
Load Constraints
Syntax: obj << Load Constraints
Description: Load a previously saved factor constraints table for use in this experiment.
dt = Open( "$SAMPLE_DATA/Design Experiment/Diamond Constraints.jmp" );
d = DOE(
Custom Design,
Add Factor( Continuous, -1, 1, "X1", 0 ),
Add Factor( Continuous, -1, 1, "X2", 0 ),
Add Term( {1, 0} ),
Load Constraints
);
Load Design
Syntax: obj << Load Design
Description: Load Design
d = DOE( Custom Design );
d << Load Design();
Load Factors
Syntax: obj << Load Factors
Description: Load a previously saved factors table for use in this experiment.
dt = Open( "$SAMPLE_DATA/Design Experiment/Bounce Factors.jmp" );
DOE( Custom Design, Load Factors );
Load Responses
Syntax: obj << Load Responses
Description: Loads a previously saved data table of responses.
dt = Open( "$SAMPLE_DATA/Design Experiment/Bounce Response.jmp" );
DOE( Custom Design, Load Responses );
Local Design
Syntax: obj << Local Design( state=0|1 )
Description: Specifies if local design for the prior mean should be created.
DOE(
Accelerated Life Test Plan,
{ALT Plan Setup( 1 ), Set Monitoring Choice( 2, {5, 200, 200} ),
ALT Optimality Criterion( "Make Quantile Estimate Optimal" ),
ALT Factor Settings( 1, {"X1", 3, 1, 20, 30, 90, 110} ),
Set Level Values( 1, [90 100 110] ), Distribution Choice( LogNormal ),
Set Prior Mean ALT( [-40 1.5 2] ), Set Prior Std Error ALT( [10, 0.2, 0.5] ),
Set Prior Correlation ALT( [1 -0.99 0, -0.99 1 0, 0 0 1] ), Local Design( 0 ),
Set ALT Time Range( 10000, 20000 ), Set ALT Probability of Interest( 0.1 ),
Set Length of Test( 1000 ), Set Inspection Times( [200 400 600 800 1000] ),
Set Number of Units( 150 ), Set Candidate Runs( [90 0 150, 100 0 150, 110 0 150] )}
);
Make Design
Syntax: obj << Make Design
Description: Creates the design that you specified in the script.
d = DOE( Custom Design, Add factor, Add factor, Add factor );
d << Make Model( RSM );
d << Make Design;
Make Model
Syntax: obj << Make Model( Linear|Interactions|RSM )
Description: Adds terms to the list of model terms for the specified model.
Example 1
d = DOE( Custom Design, Add Factor, Add Factor, Add Factor );
d << Make Model( RSM );
Example 2
d = DOE( Custom Design, Add Factor, Add Factor, Add Factor );
d << Make Model( Interactions );
Make Strip Plot Design
Syntax: obj << Make Strip Plot Design
Description: Specifies a strip plot design when hard-to-change factors vary independently from very hard-to-change factors.
d = DOE(
Custom Design,
Add Factor( Continuous, -1, 1, "X1", 2 ),
Add Factor( Continuous, -1, 1, "X2", 1 ),
Add Factor( Continuous, -1, 1, "X3", 0 )
);
d << Set N Whole Plots( 4 );
d << Make Strip Plot Design;
Make Table
Syntax: obj << Make Table
Description: Creates a data table from the current design.
d = DOE( Custom Design, Add factor, Add factor, Add factor );
d << Make Design;
d << Make Table;
Make Test Plan
Syntax: obj << Make Test Plan
Description: Creates the test plan for an accelerated life test plan.
DOE(
Accelerated Life Test Plan,
{ALT Plan Setup( 1 ), Set Monitoring Choice( "Monitoring at Intervals", {5, 200, 200} ),
ALT Optimality Criterion( "Make Quantile Estimate Optimal" ),
ALT Factor Settings( 1, {"X1", 3, 1, 20, 30, 90, 110} ),
Set Level Values( 1, [90 100 110] ), Distribution Choice( LogNormal ),
Set Prior Mean ALT( [-40 1.5 2] ), Set Prior Std Error ALT( [10, 0.2, 0.5] ),
Set Prior Correlation ALT( [1 -0.99 0, -0.99 1 0, 0 0 1] ), Use Prior Uncertainty( 1 ),
Set ALT Time Range( 10000, 20000 ), Set ALT Probability of Interest( 0.1 ),
Set Length of Test( 1000 ), Set Inspection Times( [200 400 600 800 1000] ),
Set Number of Units( 150 ), Set Candidate Runs( [90 0 150, 100 0 150, 110 0 150] ),
Make Design, Make Test Plan}
);
MaxPro Categorical Weight
Syntax: obj << MaxPro Categorical Weight
Description: Specifies MaxPro weight. Values larger than 1 increase the separation of points that have the same categorical level.
JMP Version Added: 14
DOE(
Space Filling Design,
{Add Factor( Continuous, -1, 1, "X1", 0 ), Add Factor( Continuous, -1, 1, "X2", 0 ),
Add Factor( Categorical, {"L1", "L2", "L3", "L4"}, "X3", 0 ),
FFF Optimality Criterion( MaxPro ), MaxPro Categorical Weight( 4 ),
Space Filling Design Type( Fast Flexible Filling, 100 )}
);
Mixture Design Type
Syntax: obj << Mixture Design Type( Simplex Centroid|Simplex Lattice|ABCD|Extreme Vertices|Space Filling )
Description: Specifies the type of mixture design. The default parameters are used unless you specify the parameter as the second argument.
Example 1
d = doe( Mixture Design );
d << Mixture Design Type( Simplex Centroid, 2 );
Example 2
d = doe( Mixture Design );
d << Mixture Design Type( Simplex Lattice, 4 );
Example 3
d = doe( Mixture Design );
d << Mixture Design Type( ABCD );
Example 4
d = doe( Mixture Design );
d << Change Factor Settings( 1, .05, .25 );
d << Mixture Design Type( Extreme Vertices, 3 );
Example 5
d = doe( Mixture Design );
d << Mixture Design Type( Space Filling, 25 );
Mixture Sum
Syntax: obj << Mixture Sum
Description: Use this option when you want to express the sum of all the ingredients to be other than 1. The mixture total is the sum of all the ingredient amounts.
DOE(
Custom Design,
Mixture Sum( 50 ),
Add Factor( Mixture, 10, 25, "X1", 0 ),
Add Factor( Mixture, 0, 15, "X2", 0 ),
Add Factor( Mixture, 25, 40, "X3", 0 ),
Make Design
);
Nesting Structure
Syntax: obj << Nesting Structure
Description: Specifies the nesting structure of the design. Use a bracketed list to indicate nesting (first element is nesting factor, second element is bracketed list of nested factors or structures). Use horizontal concatenation ('||') to indicate crossed factors or structures.
DOE(
MSA Design,
Add Factor( Categorical, {"L1", "L2"}, "X1", MSA( 4, 1, 1 ) ),
Add Factor( Categorical, {"L1", "L2"}, "X2", MSA( 4, 1, 1 ) ),
Add Factor( Categorical, {"L1", "L2"}, "X3", MSA( 4, 1, 1 ) ),
Nesting Structure( {"X1", {"X2"}} || "X3" )
);
Number of Column Starts
Syntax: obj << Number of Column Starts
Description: Specifies the number of times that random columns are optimized for each factor of a main effects screening design.
DOE(
Screening Design,
Add Factor( Continuous, -1, 1, "X1", 0 ),
Add Factor( Continuous, -1, 1, "X2", 0 ),
Add Factor( Continuous, -1, 1, "X3", 0 ),
Screening Type( 1 ),
Number of Column Starts( 100 ),
Set Sample Size( 12 ),
Make Design
);
Number of Extra Runs
Syntax: obj << Number of Extra Runs
Description: Specifies the number of extra runs to include in a definitive screening design.
DOE(
Definitive Screening Design,
Add Factor,
Add Factor,
Add Factor,
Add Factor,
Add Factor,
Add Factor,
Show Blocking Options( 1, 2 ),
Number of Extra Runs( 4 )
);
Number of Starts
Syntax: obj << Number of Starts
Description: Specifies the number of times the design is regenerated to optimize the overall design.
DOE(
Custom Design,
Add Factor( Continuous, -1, 1, "X1", 0 ),
Add Factor( Continuous, -1, 1, "X2", 0 ),
Add Factor( Continuous, -1, 1, "X3", 0 ),
Number of Starts( 1000 ),
Make Design
);
Optimality Criterion
Syntax: obj << Optimality Criterion( "Recommended"|"Make D-Optimal Design"|"Make I-Optimal Design"|"Make A-Optimal Design"|"Make Alias Optimal Design" )
Description: Specifies the criterion used in the design. Recommended is the default value.
Example 1
DOE(
Custom Design,
Add Factor( Continuous, -1, 1, "X1", 0 ),
Add Factor( Continuous, -1, 1, "X2", 0 ),
Add Factor( Continuous, -1, 1, "X3", 0 ),
Optimality Criterion( "Make I-optimal Design" ),
Make Design
);
Example 2
DOE(
Custom Design,
Add Factor( Continuous, -1, 1, "X1", 0 ),
Add Factor( Continuous, -1, 1, "X2", 0 ),
Add Factor( Continuous, -1, 1, "X3", 0 ),
Optimality Criterion( 2 ),
Make Design
);
Order Column
Syntax: obj << Order Column
Description: Requests an order column when the data table is created.
JMP Version Added: 14
d = DOE( Balanced Incomplete Block Design );
d << Treatments( 3, {"L1", "L2", "L3"} );
d << Make Design;
d << OrderColumn( 1 );
Prior Parameter Variance
Syntax: obj << Prior Parameter Variance
Description: Use this option to control the weight used for If Possible terms in a model. Higher values mean more prior information and smaller variance. The variances are the reciprocals of the entered values.
DOE(
Custom Design,
Add Factor( Continuous, -1, 1, "X1", 0 ),
Add Factor( Continuous, -1, 1, "X2", 0 ),
Add Potential Term( {1, 1} ),
Add Potential Term( {2, 1} ),
Add Potential Term( {1, 1}, {2, 1} ),
Prior Parameter Variance( [0, 1, 2, 6] ),
Make Design
);
Prior Specification Choice
Syntax: obj << Prior Specification Choice
Description: Sets the option for specifying prior parameters, where 1 indicates Specify Intercept and 2 indicates Specify Quantile.
DOE(
Accelerated Life Test Plan,
{ALT Plan Setup( 1 ), Set Monitoring Choice( "Continuous Monitoring" ),
ALT Optimality Criterion( "Make Quantile Estimate Optimal" ),
ALT Factor Settings( 1, {"X1", 3, 1, 20, 30, 90, 110} ),
Set Level Values( 1, [90 100 110] ), Distribution Choice( LogNormal ),
Prior Specification Choice( 1 ), Set Prior Mean ALT( [-40 1.5 2] ),
Set Prior Std Error ALT( [10, 0.2, 0.5] ),
Set Prior Correlation ALT( [1 -0.99 0, -0.99 1 0, 0 0 1] ), Use Prior Uncertainty( 1 ),
Set ALT Time Range( 10000, 20000 ), Set ALT Probability of Interest( 0.1 ),
Set Length of Test( 1000 ), Set Number of Units( 150 )}
);
Reference Design
Syntax: obj << Reference Design
Description: Specify the reference design for design comparison.
JMP Version Added: 14
DOE(
Custom Design,
Add Factor,
Add Factor,
Add Factor,
Set Sample Size( 12 ),
Make Design,
Make Table
);
DOE( Custom Design, Add Factor, Add Factor, Add Factor, Make Design, Make Table );
DOE(
Custom Design,
Add Factor,
Add Factor,
Add Factor,
Set Sample Size( 4 ),
Make Design,
Make Table
);
DOE(
Compare Designs,
Reference Design( "Custom Design", X( :X1, :X2, :X3 ) ),
Additional Designs(
"Custom Design 2",
X( :X1, :X2, :X3 ),
"Custom Design 3",
X( :X1, :X2, :X3 )
)
);
Remove Alias Term
Syntax: obj << Remove Alias Term
Description: Removes a term from the list of alias terms. Specify the factor number and power for each effect in a list. Create interactions by separating effects with commas.
dt = Open( "$SAMPLE_DATA/Design Experiment/Bounce Data.jmp" );
d = DOE( Evaluate Design, X( :Silica, :Sulfur, :Silane ), Y( :Stretch ) );
d << Remove Alias Term( {1, 1}, {3, 1} );
Remove All Alias Terms
Syntax: obj << Remove All Alias Terms
Description: Removes all Alias Terms from the list of alias terms
d = DOE(
Custom Design,
Add Factor( Continuous, -1, 1, "X1", 0 ),
Add Factor( Continuous, -1, 1, "X2", 0 )
);
d << Make Model( Linear );
d << Remove All Alias Terms;
Remove Term
Syntax: obj << Remove Term
Description: Removes a term from the list of model terms. Specify the factor number and power for each effect in a list. Create interactions by separating effects with commas.
dt = Open( "$SAMPLE_DATA/Design Experiment/Bounce Data.jmp" );
d = DOE( Evaluate Design, X( :Silica, :Sulfur, :Silane ), Y( :Stretch ) );
d << Remove Term( {1, 1}, {3, 1} );
d << Remove Term( {3, 2} );
Replicates
Syntax: obj << Replicates
Description: Specifies the number of replicate runs. For MSA Designs, a second argument specifies the replicate structure: 0=Completely Randomized, 1=Batch Repeat, 2=Fast Repeat.
Example 1
d = DOE(
Custom Design,
Add Factor( Continuous, -1, 1, "X1", 0 ),
Add Factor( Continuous, -1, 1, "X2", 0 )
);
d << Make Model( Linear );
d << Replicates( 2 );
Example 2
d = DOE(
MSA Design,
{Add Response( None, "Y", ., ., . ), Add Factor(
Categorical,
{"L1", "L2"},
"X1",
MSA( 4, 1 )
), Add Factor( Categorical, {"L1", "L2"}, "X2", MSA( 4, 1 ) ),
Add Factor( Categorical, {"L1", "L2"}, "X3", MSA( 4, 1 ) ), Set Random Seed( 3983347 ),
Replicates( 2, 0 ), Simulate Responses( 0 )}
);
Report
Syntax: obj << Report
Description: Returns a reference to the report object.
d = DOE( Custom Design );
r = d << report;
t = r[Outline Box( 1 )] << Get Title;
Show( t );
Save Constraints
Syntax: obj << Save Constraints
Description: Save the factor constraints of the current experiment to a JMP table for use in another experiment
DOE(
Custom Design,
Add Response( Maximize, "Y", ., ., . ),
Add Factor( Continuous, -1, 1, "X1", 0 ),
Add Factor( Continuous, -1, 1, "X2", 0 ),
Add Factor( Continuous, -1, 1, "X3", 0 ),
Add Constraint( [1 1 0 1, 1 0 1 1] ),
Add Term( {1, 0} ),
Save Constraints
);
Save Factors
Syntax: obj << Save Factors
Description: Save the factors you just created to a JMP table so you can use these factors for another experiment.
DOE(
Custom Design,
Add Response( Match Target, "Stretch", 350, 550, 1 ),
Add Factor( Continuous, 0.7, 1.7, "Silica", 0 ),
Add Factor( Continuous, 1.8, 2.8, "Sulfur", 0 ),
Add Factor( Continuous, 40, 60, "Silane", 0 ),
Save Factors
);
Save Responses
Syntax: obj << Save Responses
Description: Saves the responses that you created as a JMP data table. You can load these responses in other experiments.
DOE(
Custom Design,
Add Response( Match Target, "Stretch", 350, 550, 1 ),
Add Factor( Continuous, 0.7, 1.7, "Silica", 0 ),
Add Factor( Continuous, 1.8, 2.8, "Sulfur", 0 ),
Add Factor( Continuous, 40, 60, "Silane", 0 ),
Save Responses
);
Save Script to Data Table
Syntax: obj << Save Script to Data Table
Description: Create a Script that will reproduce this design.
Save Script to Script Window
Syntax: obj << Save Script to Script Window
Description: Create a Script that will reproduce this design.
DOE(
Custom Design,
Add Factor( Continuous, -1, 1, "X1", 0 ),
Add Factor( Continuous, -1, 1, "X2", 0 ),
Make Design,
Save Script to Script Window
);
Save X Matrix
Syntax: obj << Save X Matrix( state=0|1 )
Description: Saves the design matrix (also called the X matrix) as a table property in the JMP data table that contains the design.
DOE(
Custom Design,
Add Factor( Continuous, -1, 1, "X1", 0 ),
Add Factor( Continuous, -1, 1, "X2", 0 ),
Save X Matrix,
Make Design,
Make Table
);
Screening Type
Syntax: obj << Screening Type
Description: Specifies a main effects screening design, which is orthogonal or near orthogonal.
d = DOE(
Screening Design,
Add Factor( Continuous, -1, 1, "X1", 0 ),
Add Factor( Continuous, -1, 1, "X2", 0 ),
Add Factor( Continuous, -1, 1, "X3", 0 )
);
d << Screening Type( 1 );
d << Set Sample Size( 12 );
d << Make Design;
Select Covariate Rows
Syntax: obj << Select Covariate Rows
Description: Specifies the rows from the covariate table to be selected in DOE.
JMP Version Added: 16
dt = Open( "$SAMPLE_DATA/Big Class.jmp" );
DOE(
Custom Design,
Add Response( Maximize, "Y", ., ., . ),
Add Factor( Covariate, :sex, 0 ),
Add Factor( Covariate, :height, 0 ),
Add Factor( Covariate, :weight, 0 ),
Add Term( {1, 0} ),
Add Term( {1, 1} ),
Add Term( {2, 1} ),
Add Term( {3, 1} ),
Enforce Use of Selected Covariate Rows( 1 ),
Allow covariate rows to be repeated( 1 ),
Select Covariate Rows( [1 2 3 4] ),
Set Sample Size( 24 )
);
Set ALT Probability of Interest
Syntax: obj << Set ALT Probability of Interest
Description: Sets the probability of interest for an accelerated life test plan.
DOE(
Accelerated Life Test Plan,
{ALT Plan Setup( 1 ), Set Monitoring Choice( "Continuous Monitoring" ),
ALT Optimality Criterion( "Make Quantile Estimate Optimal" ),
ALT Factor Settings( 1, {"X1", 3, 1, 20, 30, 90, 110} ),
Set Level Values( 1, [90 100 110] ), Distribution Choice( LogNormal ),
Set Prior Mean ALT( [-40 1.5 2] ), Set Prior Std Error ALT( [10, 0.2, 0.5] ),
Set Prior Correlation ALT( [1 -0.99 0, -0.99 1 0, 0 0 1] ), Use Prior Uncertainty( 1 ),
Set ALT Time Range( 10000, 20000 ), Set ALT Probability of Interest( 0.1 ),
Set Length of Test( 1000 ), Set Number of Units( 150 )}
);
Set ALT Time Range
Syntax: obj << Set ALT Time Range
Description: Sets the time range of interest for an accelerated life test plan.
DOE(
Accelerated Life Test Plan,
{ALT Plan Setup( 1 ), Set Monitoring Choice( "Continuous Monitoring" ),
ALT Optimality Criterion( "Make Failure Probability Optimal" ),
ALT Factor Settings( 1, {"X1", 3, 1, 20, 30, 90, 110} ),
Set Level Values( 1, [90 100 110] ), Distribution Choice( LogNormal ),
Set Prior Mean ALT( [-40 1.5 2] ), Set Prior Std Error ALT( [10, 0.2, 0.5] ),
Set Prior Correlation ALT( [1 -0.99 0, -0.99 1 0, 0 0 1] ), Use Prior Uncertainty( 1 ),
Set ALT Time Range( 10000, 20000 ), Set ALT Probability of Interest( 0.1 ),
Set Length of Test( 1000 ), Set Number of Units( 150 )}
);
Set Average Cluster Size
Syntax: obj << Set Average Cluster Size
Description: Controls number of random points for clustering a Fast Flexible Filling Design.
DOE(
Space Filling Design,
Change Factor Settings( 1, -1, 1, "X1" ),
Change Factor Settings( 2, -1, 1, "X2" ),
Set Average Cluster Size( 100 ),
Space Filling Design Type( Fast Flexible Filling, 50 )
);
Set Axial Choice
Syntax: obj << Set Axial Choice( 1|2|3|4 )
Description: Specifies the axial value settings. Use 1 for Rotatable, 2 for Orthogonal, 3 for On Face, and 4 User Specified.
d = DOE( Response Surface Design, Make Design( 2 ) );
d << Set Axial Choice( 2 );
Set Axial Value
Syntax: obj << Set Axial Value
Description: Specifies the User Specified axial value.
d = DOE( Response Surface Design, Make Design( 2 ) );
d << Set Axial Value( 2 );
Set Candidate Runs
Syntax: obj << Set Candidate Runs
Description: Sets the candidate runs for an accelerated life test plan.
DOE(
Accelerated Life Test Plan,
{ALT Plan Setup( 1 ), Set Monitoring Choice( "Monitoring at Intervals", {5, 200, 200} ),
ALT Optimality Criterion( "Make Quantile Estimate Optimal" ),
ALT Factor Settings( 1, {"X1", 3, 1, 20, 30, 90, 110} ),
Set Level Values( 1, [90 100 110] ), Distribution Choice( LogNormal ),
Set Prior Mean ALT( [-40 1.5 2] ), Set Prior Std Error ALT( [10, 0.2, 0.5] ),
Set Prior Correlation ALT( [1 -0.99 0, -0.99 1 0, 0 0 1] ), Use Prior Uncertainty( 1 ),
Set ALT Time Range( 10000, 20000 ), Set ALT Probability of Interest( 0.1 ),
Set Length of Test( 1000 ), Set Inspection Times( [200 400 600 800 1000] ),
Set Number of Units( 150 ), Set Candidate Runs( [90 0 150, 100 0 150, 110 0 150] )}
);
Set Delta For Power
Syntax: obj << Set Delta For Power
Description: Specifies the values of the anticipated coefficients in Power Analysis. Anticipated coefficients will be one half of the specified value.
DOE(
Custom Design,
Add Factor( Continuous, -1, 1, "X1", 0 ),
Add Factor( Continuous, -1, 1, "X2", 0 ),
Set Delta For Power( 3 ),
Make Design
);
Set Expected Number of Respondents
Syntax: obj << Set Expected Number of Respondents
Description: Sets the expected number of respondents per survey.
DOE(
Choice Design,
{Add Factor( Categorical, {"L1", "L2"}, "X1", 0 ),
Add Factor( Categorical, {"L1", "L2"}, "X2", 0 ), Set Random Seed( 1245253625 ),
Add Term( {1, 1} ), Add Term( {2, 1} ), Set Prior Mean Choice( [0 0] ),
Set Prior Variance Matrix( [1 0, 0 1] ), Set Number of Attributes( 2 ),
Set Number of Profiles( 2 ), Set Number of Choice Sets( 8 ), Set Number of Surveys( 1 ),
Set Expected Number of Respondents( 1 )}
);
Set Generators
Syntax: obj << Set Generators
Description: Specifies the generators to be used in a screening design.
DOE(
Screening Design,
{Add Factor, Add Factor, Add Factor, Make Design( 1 ), Set Generators( [1, 1, 0] )}
);
Set Inspection Times
Syntax: obj << Set Inspection Times
Description: Sets the inspection times for an accelerated life test plan.
DOE(
Accelerated Life Test Plan,
{ALT Plan Setup( 1 ), Set Monitoring Choice( "Monitoring at Intervals", {5, 200, 200} ),
ALT Optimality Criterion( "Make Quantile Estimate Optimal" ),
ALT Factor Settings( 1, {"X1", 3, 1, 20, 30, 90, 110} ),
Set Level Values( 1, [90 100 110] ), Distribution Choice( LogNormal ),
Set Prior Mean ALT( [-40 1.5 2] ), Set Prior Std Error ALT( [10, 0.2, 0.5] ),
Set Prior Correlation ALT( [1 -0.99 0, -0.99 1 0, 0 0 1] ), Use Prior Uncertainty( 1 ),
Set ALT Time Range( 10000, 20000 ), Set ALT Probability of Interest( 0.1 ),
Set Length of Test( 1000 ), Set Inspection Times( [200 400 600 800 1000] ),
Set Number of Units( 150 ), Set Candidate Runs( [90 0 150, 100 0 150, 110 0 150] )}
);
Set Length of Test
Syntax: obj << Set Length of Test
Description: Sets the length of test for an accelerated life test plan.
DOE(
Accelerated Life Test Plan,
{ALT Plan Setup( 1 ), Set Monitoring Choice( "Continuous Monitoring" ),
ALT Optimality Criterion( "Make Quantile Estimate Optimal" ),
ALT Factor Settings( 1, {"X1", 3, 1, 20, 30, 90, 110} ),
Set Level Values( 1, [90 100 110] ), Distribution Choice( LogNormal ),
Set Prior Mean ALT( [-40 1.5 2] ), Set Prior Std Error ALT( [10, 0.2, 0.5] ),
Set Prior Correlation ALT( [1 -0.99 0, -0.99 1 0, 0 0 1] ), Use Prior Uncertainty( 1 ),
Set ALT Time Range( 10000, 20000 ), Set ALT Probability of Interest( 0.1 ),
Set Length of Test( 1000 ), Set Number of Units( 150 )}
);
Set Level Values
Syntax: obj << Set Level Values
Description: Sets the level values for the accelerating factor(s) in an accelerated life test plan.
DOE(
Accelerated Life Test Plan,
{ALT Plan Setup( 1 ), Set Monitoring Choice( "Monitoring at Intervals", {5, 200, 200} ),
ALT Optimality Criterion( "Make Quantile Estimate Optimal" ),
ALT Factor Settings( 1, {"X1", 3, 1, 20, 30, 90, 110} ),
Set Level Values( 1, [90 100 110] ), Distribution Choice( LogNormal ),
Set Prior Mean ALT( [-40 1.5 2] ), Set Prior Std Error ALT( [10, 0.2, 0.5] ),
Set Prior Correlation ALT( [1 -0.99 0, -0.99 1 0, 0 0 1] ), Use Prior Uncertainty( 1 ),
Set ALT Time Range( 10000, 20000 ), Set ALT Probability of Interest( 0.1 ),
Set Length of Test( 1000 ), Set Inspection Times( [200 400 600 800 1000] ),
Set Number of Units( 150 ), Set Candidate Runs( [90 0 150, 100 0 150, 110 0 150] )}
);
Set Monitoring Choice
Syntax: obj << Set Monitoring Choice
Description: Specifies the type of monitoring for an accelerated life test plan.
DOE(
Accelerated Life Test Plan,
{ALT Plan Setup( 1 ), Set Monitoring Choice( "Continuous Monitoring" ),
ALT Optimality Criterion( "Make Quantile Estimate Optimal" ),
ALT Factor Settings( 1, {"X1", 3, 1, 20, 30, 90, 110} ),
Set Level Values( 1, [90 100 110] ), Distribution Choice( LogNormal ),
Set Prior Mean ALT( [-40 1.5 2] ), Set Prior Std Error ALT( [10, 0.2, 0.5] ),
Set Prior Correlation ALT( [1 -0.99 0, -0.99 1 0, 0 0 1] ), Use Prior Uncertainty( 1 ),
Set ALT Time Range( 10000, 20000 ), Set ALT Probability of Interest( 0.1 ),
Set Length of Test( 1000 ), Set Number of Units( 150 )}
);
Set N Subplots
Syntax: obj << Set N Subplots
Description: Specifies the number of subplots when there are both hard-to-change and very hard-to-change factors.
d = DOE(
Custom Design,
Add Factor( Continuous, -1, 1, "X1", 2 ),
Add Factor( Continuous, -1, 1, "X2", 1 ),
Add Factor( Continuous, -1, 1, "X3", 0 )
);
d << Set N Whole Plots( 4 );
d << Set N Subplots( 8 );
Set N Whole Plots
Syntax: obj << Set N Whole Plots
Description: Specifies the number of whole plots when there are hard-to-change or very hard-to-change factors.
d = DOE(
Custom Design,
Add Factor( Continuous, -1, 1, "X1", 1 ),
Add Factor( Continuous, -1, 1, "X2", 0 )
);
d << Set N Whole Plots( 6 );
Set Number of Attributes
Syntax: obj << Set Number of Attributes
Description: Sets the number of attributes that can change within a choice set.
DOE(
Choice Design,
{Add Factor( Categorical, {"L1", "L2"}, "X1", 0 ),
Add Factor( Categorical, {"L1", "L2"}, "X2", 0 ), Set Random Seed( 1245253625 ),
Add Term( {1, 1} ), Add Term( {2, 1} ), Set Prior Mean Choice( [0 0] ),
Set Prior Variance Matrix( [1 0, 0 1] ), Set Number of Attributes( 2 ),
Set Number of Profiles( 2 ), Set Number of Choice Sets( 8 ), Set Number of Surveys( 1 ),
Set Expected Number of Respondents( 1 )}
);
Set Number of Choice Sets
Syntax: obj << Set Number of Choice Sets
Description: Sets the number of choice sets per survey.
DOE(
Choice Design,
{Add Factor( Categorical, {"L1", "L2"}, "X1", 0 ),
Add Factor( Categorical, {"L1", "L2"}, "X2", 0 ), Set Random Seed( 1245253625 ),
Add Term( {1, 1} ), Add Term( {2, 1} ), Set Prior Mean Choice( [0 0] ),
Set Prior Variance Matrix( [1 0, 0 1] ), Set Number of Attributes( 2 ),
Set Number of Profiles( 2 ), Set Number of Choice Sets( 8 ), Set Number of Surveys( 1 ),
Set Expected Number of Respondents( 1 )}
);
Set Number of FDS points
Syntax: obj << Set Number of FDS points
Description: Sets the number of points used to generate the Fraction of Design Space Plot.
JMP Version Added: 14
DOE(
Custom Design,
{Add Factor( Continuous, -1, 1, "X1", 0 ), Add Factor( Continuous, -1, 1, "X2", 0 ),
Set Sample Size( 7 ), Design Search Time( 8 ), Set Number of FDS points( 20000 ),
Make Design}
);
Set Number of Profiles
Syntax: obj << Set Number of Profiles
Description: Sets the number of profiles per choice set.
DOE(
Choice Design,
{Add Factor( Categorical, {"L1", "L2"}, "X1", 0 ),
Add Factor( Categorical, {"L1", "L2"}, "X2", 0 ), Set Random Seed( 1245253625 ),
Add Term( {1, 1} ), Add Term( {2, 1} ), Set Prior Mean Choice( [0 0] ),
Set Prior Variance Matrix( [1 0, 0 1] ), Set Number of Attributes( 2 ),
Set Number of Profiles( 2 ), Set Number of Choice Sets( 8 ), Set Number of Surveys( 1 ),
Set Expected Number of Respondents( 1 )}
);
Set Number of Surveys
Syntax: obj << Set Number of Surveys
Description: Sets the number of surveys for a choice design.
DOE(
Choice Design,
{Add Factor( Categorical, {"L1", "L2"}, "X1", 0 ),
Add Factor( Categorical, {"L1", "L2"}, "X2", 0 ), Set Random Seed( 1245253625 ),
Add Term( {1, 1} ), Add Term( {2, 1} ), Set Prior Mean Choice( [0 0] ),
Set Prior Variance Matrix( [1 0, 0 1] ), Set Number of Attributes( 2 ),
Set Number of Profiles( 2 ), Set Number of Choice Sets( 8 ), Set Number of Surveys( 1 ),
Set Expected Number of Respondents( 1 )}
);
Set Number of Units
Syntax: obj << Set Number of Units
Description: Sets the number of units under test for an accelerated life test plan.
DOE(
Accelerated Life Test Plan,
{ALT Plan Setup( 1 ), Set Monitoring Choice( "Continuous Monitoring" ),
ALT Optimality Criterion( "Make Quantile Estimate Optimal" ),
ALT Factor Settings( 1, {"X1", 3, 1, 20, 30, 90, 110} ),
Set Level Values( 1, [90 100 110] ), Distribution Choice( LogNormal ),
Set Prior Mean ALT( [-40 1.5 2] ), Set Prior Std Error ALT( [10, 0.2, 0.5] ),
Set Prior Correlation ALT( [1 -0.99 0, -0.99 1 0, 0 0 1] ), Use Prior Uncertainty( 1 ),
Set ALT Time Range( 10000, 20000 ), Set ALT Probability of Interest( 0.1 ),
Set Length of Test( 1000 ), Set Number of Units( 150 )}
);
Set Prior Correlation ALT
Syntax: obj << Set Prior Correlation ALT
Description: Sets the prior correlations for an accelerated life test plan.
JMP Version Added: 16
DOE(
Accelerated Life Test Plan,
{ALT Plan Setup( 1 ), Set Monitoring Choice( "Continuous Monitoring" ),
ALT Optimality Criterion( "Make Quantile Estimate Optimal" ),
ALT Factor Settings( 1, {"X1", 3, 1, 20, 30, 90, 110} ),
Set Level Values( 1, [90 100 110] ), Distribution Choice( LogNormal ),
Set Prior Mean ALT( [-40 1.5 2] ), Set Prior Std Error ALT( [10, 0.2, 0.5] ),
Set Prior Correlation ALT( [1 -0.99 0, -0.99 1 0, 0 0 1] ), Use Prior Uncertainty( 1 ),
Set ALT Time Range( 10000, 20000 ), Set ALT Probability of Interest( 0.1 ),
Set Length of Test( 1000 ), Set Number of Units( 150 )}
);
Set Prior Mean ALT
Syntax: obj << Set Prior Mean ALT
Description: Sets the prior mean for an accelerated life test plan.
DOE(
Accelerated Life Test Plan,
{ALT Plan Setup( 1 ), Set Monitoring Choice( "Continuous Monitoring" ),
ALT Optimality Criterion( "Make Quantile Estimate Optimal" ),
ALT Factor Settings( 1, {"X1", 3, 1, 20, 30, 90, 110} ),
Set Level Values( 1, [90 100 110] ), Distribution Choice( LogNormal ),
Set Prior Mean ALT( [-40 1.5 2] ), Set Prior Std Error ALT( [10, 0.2, 0.5] ),
Set Prior Correlation ALT( [1 -0.99 0, -0.99 1 0, 0 0 1] ), Use Prior Uncertainty( 1 ),
Set ALT Time Range( 10000, 20000 ), Set ALT Probability of Interest( 0.1 ),
Set Length of Test( 1000 ), Set Number of Units( 150 )}
);
Set Prior Mean Choice
Syntax: obj << Set Prior Mean Choice
Description: Sets the Prior Mean for a choice design.
DOE(
Choice Design,
{Add Factor( Categorical, {"L1", "L2"}, "X1", 0 ),
Add Factor( Categorical, {"L1", "L2"}, "X2", 0 ), Set Random Seed( 1245253625 ),
Add Term( {1, 1} ), Add Term( {2, 1} ), Set Prior Mean Choice( [0 0] ),
Set Prior Variance Matrix( [1 0, 0 1] ), Set Number of Attributes( 2 ),
Set Number of Profiles( 2 ), Set Number of Choice Sets( 8 ), Set Number of Surveys( 1 ),
Set Expected Number of Respondents( 1 )}
);
Set Prior Quantile ALT
Syntax: obj << Set Prior Quantile ALT
Description: Sets the information for specifying the prior intercept based on a quantile.
DOE(
Accelerated Life Test Plan,
{ALT Plan Setup( 1 ), Set Monitoring Choice( "Continuous Monitoring" ),
ALT Optimality Criterion( "Make Quantile Estimate Optimal" ),
ALT Factor Settings( 1, {"X1", 3, 1, 20, 30, 90, 110} ),
Set Level Values( 1, [90 100 110] ), Distribution Choice( LogNormal ),
Prior Specification Choice( 2 ), Set Prior Quantile ALT( {[1.5 2], 0.065, 2642, 45} ),
Set Prior Std Error ALT( [10, 0.2, 0.5] ),
Set Prior Correlation ALT( [1 -0.99 0, -0.99 1 0, 0 0 1] ), Use Prior Uncertainty( 1 ),
Set ALT Time Range( 10000, 20000 ), Set ALT Probability of Interest( 0.1 ),
Set Length of Test( 1000 ), Set Number of Units( 150 )}
);
Set Prior Std Error ALT
Syntax: obj << Set Prior Std Error ALT
Description: Sets the prior standard error for an accelerated life test plan.
JMP Version Added: 16
DOE(
Accelerated Life Test Plan,
{ALT Plan Setup( 1 ), Set Monitoring Choice( "Continuous Monitoring" ),
ALT Optimality Criterion( "Make Quantile Estimate Optimal" ),
ALT Factor Settings( 1, {"X1", 3, 1, 20, 30, 90, 110} ),
Set Level Values( 1, [90 100 110] ), Distribution Choice( LogNormal ),
Set Prior Mean ALT( [-40 1.5 2] ), Set Prior Std Error ALT( [10, 0.2, 0.5] ),
Set Prior Correlation ALT( [1 -0.99 0, -0.99 1 0, 0 0 1] ), Use Prior Uncertainty( 1 ),
Set ALT Time Range( 10000, 20000 ), Set ALT Probability of Interest( 0.1 ),
Set Length of Test( 1000 ), Set Number of Units( 150 )}
);
Set Prior Variance ALT
Syntax: obj << Set Prior Variance ALT
Description: Sets the prior variance for an accelerated life test plan.
DOE(
Accelerated Life Test Plan,
{ALT Plan Setup( 1 ), Set Monitoring Choice( "Continuous Monitoring" ),
ALT Optimality Criterion( "Make Quantile Estimate Optimal" ),
ALT Factor Settings( 1, {"X1", 3, 1, 20, 30, 90, 110} ),
Set Level Values( 1, [90 100 110] ), Distribution Choice( LogNormal ),
Set Prior Mean ALT( [-40 1.5 2] ), Set Prior Variance ALT( [0.1 0 0, 0 0.1 0, 0 0 0.1] ),
Use Prior Uncertainty( 1 ), Set ALT Time Range( 10000, 20000 ),
Set ALT Probability of Interest( 0.1 ), Set Length of Test( 1000 ),
Set Number of Units( 150 )}
);
Set Prior Variance Matrix
Syntax: obj << Set Prior Variance Matrix
Description: Sets the Prior Variance Matrix for a choice design.
DOE(
Choice Design,
{Add Factor( Categorical, {"L1", "L2"}, "X1", 0 ),
Add Factor( Categorical, {"L1", "L2"}, "X2", 0 ), Set Random Seed( 1245253625 ),
Add Term( {1, 1} ), Add Term( {2, 1} ), Set Prior Mean Choice( [0 0] ),
Set Prior Variance Matrix( [1 0, 0 1] ), Set Number of Attributes( 2 ),
Set Number of Profiles( 2 ), Set Number of Choice Sets( 8 ), Set Number of Surveys( 1 ),
Set Expected Number of Respondents( 1 )}
);
Set RMSE
Syntax: obj << Set RMSE
Description: Specifies the anticipated root mean square error (RMSE) in Power Analysis.
dt = Open( "$SAMPLE_DATA/Design Experiment/Bounce Data.jmp" );
d = DOE( Evaluate Design, X( :Silica, :Sulfur, :Silane ), Y( :Stretch ) );
d << Set RMSE( 1.5 );
Set Random Seed
Syntax: obj << Set Random Seed
Description: Useful for teaching. Setting the random seed to a specific value assures that all class members get the same design.
DOE(
Custom Design,
Add Factor( Continuous, -1, 1, "X1", 0 ),
Add Factor( Continuous, -1, 1, "X2", 0 ),
Set Random Seed( 34067086 ),
Make Design
);
Set Run Order
Syntax: obj << Set Run Order
Description: Specifies how the run order should be set when making a data table from a design.
d = DOE( Custom Design, Add factor, Add factor, Add factor );
d << Make Design;
d << Set Run Order( Sort Left to Right );
d << Make Table;
Set Runs Per Random Block
Syntax: obj << Set Runs Per Random Block
Description: Specifies the size of random blocks in the design.
d = DOE(
Custom Design,
Add Factor( Continuous, -1, 1, "X1", 0 ),
Add Factor( Continuous, -1, 1, "X2", 0 ),
Make Model( Linear )
);
d << Set Runs Per Random Block( 4 );
Set Sample Size
Syntax: obj << Set Sample Size
Description: Specifies the sample size before the design is created. If the specified number is less than the minimum value shown in the designer, the sample size is set to the minimum value.
d = DOE( Custom Design, Add factor, Add factor, Add factor );
d << Make Model( Linear );
d << Set Sample Size( 12 );
Set Significance Level
Syntax: obj << Set Significance Level
Description: Change the significance level in Power Analysis.
dt = Open( "$SAMPLE_DATA/Design Experiment/Bounce Data.jmp" );
d = DOE( Evaluate Design, X( :Silica, :Sulfur, :Silane ), Y( :Stretch ) );
d << Set Significance Level( 0.10 );
Set Strength
Syntax: obj << Set Strength
Description: Sets the strength for Covering Arrays
d = DOE(
Covering Array,
Add factor( Categorical ),
Add factor( Categorical ),
Add factor( Categorical )
);
d << Set Strength( 3 );
d << Make Table;
Show Blocking Options
Syntax: obj << Show Blocking Options
Description: Specifies the blocking choice and number of blocks for a definitive screening design. Specifying a value of 0 indicates no blocks.
Example 1
DOE(
Definitive Screening Design,
Add Factor,
Add Factor,
Add Factor,
Add Factor,
Add Factor,
Add Factor,
Show Blocking Options( 0, 0 ),
Number of Extra Runs( 4 )
);
Example 2
DOE(
Definitive Screening Design,
Add Factor,
Add Factor,
Add Factor,
Add Factor,
Add Factor,
Add Factor,
Show Blocking Options( 1, 2 ),
Number of Extra Runs( 4 )
);
Simulate Responses
Syntax: obj << Simulate Responses( state=0|1 )
Description: Add data for the responses to the JMP design table. For use in teaching DOE.
DOE(
Custom Design,
Add Factor( Continuous, -1, 1, "X1", 0 ),
Add Factor( Continuous, -1, 1, "X2", 0 ),
Make Design,
Simulate Responses,
Make Table
);
Solve for Power
Syntax: obj << Solve for Power
Description: Sets the anticipated coefficients in Power Analysis so that the power is near the specified value.
JMP Version Added: 16
DOE(
Custom Design,
Add Factor( Continuous, -1, 1, "X1", 0 ),
Add Factor( Continuous, -1, 1, "X2", 0 ),
Make Design,
Solve for Power( 0.8 )
);
Space Filling Design Type
Syntax: obj << Space Filling Design Type( Sphere Packing|Latin Hypercube|Uniform|Minimum Potential|Maximum Entropy|IMSE Optimal|Fast Flexible Filling )
Description: Specifies the type of space filling design and the number of runs.
Example 1
d = DOE( Space Filling Design );
d << Space Filling Design Type( Sphere Packing, 30 );
Example 2
d = DOE( Space Filling Design );
d << Space Filling Design Type( Latin Hypercube, 100 );
Example 3
d = DOE( Space Filling Design );
d << Space Filling Design Type( Uniform, 20 );
Example 4
d = DOE( Space Filling Design );
d << Space Filling Design Type( Fast Flexible Filling, 100 );
Example 5
d = DOE( Space Filling Design, Space Filling Design Type( IMSE Optimal, 20 ) );
d << Theta( [2, 3] );
d << Make Design;
Sphere Radius
Syntax: obj << Sphere Radius
Description: Specifies a spherical design region and enables you to set the radius of the region.
DOE(
Custom Design,
Add Factor( Continuous, -1, 1, "X1", 0 ),
Add Factor( Continuous, -1, 1, "X2", 0 ),
Sphere Radius( 1 ),
Make Design
);
Split Plot Variance Ratio
Syntax: obj << Split Plot Variance Ratio( Whole Plot Ratio | [Whole Plot Ratio, Subplot Ratio] )
Description: For hard-to-change factors, specify the ratio of the whole-plot error variance to the run-to-run error. For hard-to-change and very hard-to-change factors, specify the ratio of the whole plot and subplot error to the run-to-run error.
Example 1
DOE(
Custom Design,
Add Factor( Continuous, -1, 1, "X1", 1 ),
Add Factor( Continuous, -1, 1, "X2", 0 ),
Set N Whole Plots( 4 ),
Split Plot Variance Ratio( 2 ),
Make Design
);
Example 2
d = DOE(
Custom Design,
Add Factor( Continuous, -1, 1, "X1", 2 ),
Add Factor( Continuous, -1, 1, "X2", 1 ),
Add Factor( Continuous, -1, 1, "X3", 0 ),
Set N Whole Plots( 4 )
);
d << Split Plot Variance Ratio( [3, 2] );
d << Make Design;
Suppress Cotter Designs
Syntax: obj << Suppress Cotter Designs( state=0|1 )
Description: Shows or hides Cotter designs in the list of screening designs. This option is selected by default, which means that Cotters designs are initially not in the screening design list. On by default.
DOE(
Screening Design,
Add Factor( Continuous, -1, 1, "X1", 0 ),
Add Factor( Continuous, -1, 1, "X2", 0 ),
Add Factor( Continuous, -1, 1, "X3", 0 ),
Suppress Cotter Designs,
Make Design( 5 )
);
Table of Correlations
Syntax: obj << Table of Correlations
Description: Create a data table with the Table of Correlations from Design Diagnostics.
JMP Version Added: 15
DOE(
Custom Design,
Add Factor( Continuous, -1, 1, "X1", 0 ),
Add Factor( Continuous, -1, 1, "X2", 0 ),
Make Design,
Table of Correlations
);
Theta
Syntax: obj << Theta
Description: Specifies the Covariance Parameter Vector for Space Filling designs.
d = DOE( Space Filling Design, Space Filling Design Type( IMSE Optimal, 20 ) );
d << Theta( [2, 3] );
Treatments
Syntax: obj << Treatments
Description: Specifies the number of treatments for a balanced incomplete block design (BIBD).
JMP Version Added: 14
d = DOE( Balanced Incomplete Block Design );
d << Treatments( 3, {"L1", "L2", "L3"} );
d << Make Design;
Use Bayesian information
Syntax: obj << Use Bayesian information( state=0|1 )
Description: Uses prior information in the Bayesian setting for the design diagnostics.
JMP Version Added: 15
DOE(
Custom Design,
Add Factor( Continuous, -1, 1, "X1", 0 ),
Add Factor( Continuous, -1, 1, "X2", 0 ),
Add Term( {1, 1} ),
Add Term( {2, 1} ),
Add Potential Term( {1, 1}, {2, 1} ),
Number of Starts( 10 ),
Make Design,
Use Bayesian Information( 1 )
);
Use Blue to Red color theme for color map
Syntax: obj << Use Blue to Red color theme for color map( state=0|1 )
Description: Uses blue to red color theme for color map on correlations.
JMP Version Added: 15
Use Prior Uncertainty
Syntax: obj << Use Prior Uncertainty( state=0|1 )
Description: Specifies if the prior uncertainty should be used to construct the optimal design.
JMP Version Added: 16
DOE(
Accelerated Life Test Plan,
{ALT Plan Setup( 1 ), Set Monitoring Choice( 2, {5, 200, 200} ),
ALT Optimality Criterion( "Make Quantile Estimate Optimal" ),
ALT Factor Settings( 1, {"X1", 3, 1, 20, 30, 90, 110} ),
Set Level Values( 1, [90 100 110] ), Distribution Choice( LogNormal ),
Set Prior Mean ALT( [-40 1.5 2] ), Set Prior Std Error ALT( [10, 0.2, 0.5] ),
Set Prior Correlation ALT( [1 -0.99 0, -0.99 1 0, 0 0 1] ), Use Prior Uncertainty( 1 ),
Set ALT Time Range( 10000, 20000 ), Set ALT Probability of Interest( 0.1 ),
Set Length of Test( 1000 ), Set Inspection Times( [200 400 600 800 1000] ),
Set Number of Units( 150 ), Set Candidate Runs( [90 0 150, 100 0 150, 110 0 150] )}
);
Utility Neutral Design
Syntax: obj << Utility Neutral Design( state=0|1 )
Description: Specifies if Utility Neutral Choice Design should be created.
DOE(
Choice Design,
{Add Factor( Categorical, {"L1", "L2"}, "X1", 0 ),
Add Factor( Categorical, {"L1", "L2"}, "X2", 0 ), Set Random Seed( 1245253625 ),
Add Term( {1, 1} ), Add Term( {2, 1} ), Set Prior Mean Choice( [0 0] ),
Set Prior Variance Matrix( [1 0, 0 1] ), Set Number of Attributes( 2 ),
Set Number of Profiles( 2 ), Set Number of Choice Sets( 8 ), Set Number of Surveys( 1 ),
Set Expected Number of Respondents( 1 ), Utility Neutral Design( 1 )}
);