Response Screening
Associated Constructors
Response Screening
Syntax: Response Screening( Y( columns ), X( columns ) )
Description: Automates the process of conducting tests for linear model effects across a large number of responses. Test results and summary statistics are presented in data tables and plots. The false discovery rate (FDR) guards against incorrect declarations of significance. A robust estimation method reduces the sensitivity of tests to outliers.
Example 1
dt = Open( "$SAMPLE_DATA/Probe.jmp" );
obj = dt << Response Screening(
Y( :DELL_RPNBR, :DELL_RPPBR, :DELW_M1, :DELW_M2, :DELW_NBASE ),
X( :Process )
);
Example 2
dt = Open( "$Sample_Data/Probe.jmp" );
obj = dt << Response Screening( X( :Process ), Y( Eval( 8 :: 108 ) ) );
Columns
By
Syntax: obj = Response Screening(...<By( column(s) )>...)
Description: Performs a separate analysis for each level of the specified column.
dt = Open( "$SAMPLE_DATA/Probe.jmp" );
dt << New Column( "_bycol",
Character,
Nominal,
set values( Repeat( {"A", "B"}, N Rows( dt ) )[1 :: N Rows( dt )] )
);
obj = dt << Response Screening(
Y( :DELL_RPNBR, :DELL_RPPBR, :DELW_M1, :DELW_M2, :DELW_NBASE ),
X( :Process ),
By( _bycol )
);
Freq
Syntax: obj = Response Screening(...<Freq( column )>...)
Description: Specifies a column whose values assign a frequency to each row for the analysis.
dt = Open( "$SAMPLE_DATA/Probe.jmp" );
dt << New Column( "_freqcol", Numeric, Continuous, Formula( Random Integer( 1, 5 ) ) );
obj = dt << Response Screening(
Y( :DELL_RPNBR, :DELL_RPPBR, :DELW_M1, :DELW_M2, :DELW_NBASE ),
X( :Process ),
Freq( _freqcol )
);
Grouping
Syntax: obj = Response Screening(...<Grouping( column(s) )>...)
Description: Specifies categorical columns as grouping variables. The rows assigned to each level of the specified column are analyzed separately.
dt = Open( "$SAMPLE_DATA/Probe.jmp" );
obj = dt << Response Screening(
X( :Process ),
Y( Column Group( "Responses" ) ),
Grouping( :Site )
);
Response
Syntax: obj = Response Screening(...Response( column(s) )...)
Description: Specifies the response variables that contain the measurements to be analyzed.
dt = Open( "$SAMPLE_DATA/Probe.jmp" );
obj = dt << Response Screening(
Y( :DELL_RPNBR, :DELL_RPPBR, :DELW_M1, :DELW_M2, :DELW_NBASE ),
X( :Process )
);
Subgroup
Syntax: obj = Response Screening(...<Subgroup( column(s) )>...)
Description: Specifies one or more subgroup variables. When a subgroup variable is defined, additional fits are performed for each category of the subgroup variable.
dt = Open( "$SAMPLE_DATA/Probe.jmp" );
obj = dt << Response Screening(
X( :Process ),
Y( Column Group( "Responses" ) ),
Subgroup( :Site )
);
Weight
Syntax: obj = Response Screening(...<Weight( column )>...)
Description: Specifies a column whose values assign a weight to each row for the analysis.
dt = Open( "$SAMPLE_DATA/Probe.jmp" );
dt << New Column( "_weightcol", Numeric, Continuous, Formula( Random Beta( 1, 1 ) ) );
obj = dt << Response Screening(
Y( :DELL_RPNBR, :DELL_RPPBR, :DELW_M1, :DELW_M2, :DELW_NBASE ),
X( :Process ),
Weight( _weightcol )
);
X
Syntax: obj = Response Screening(...X( column(s) )...)
Description: Specifies the predictor variables.
dt = Open( "$SAMPLE_DATA/Probe.jmp" );
obj = dt << Response Screening(
Y( :DELL_RPNBR, :DELL_RPPBR, :DELW_M1, :DELW_M2, :DELW_NBASE ),
X( :Process )
);
Y
Syntax: obj = Response Screening(...Y( column(s) )...)
Description: Specifies the response variables that contain the measurements to be analyzed.
dt = Open( "$SAMPLE_DATA/Probe.jmp" );
obj = dt << Response Screening(
Y( :DELL_RPNBR, :DELL_RPPBR, :DELW_M1, :DELW_M2, :DELW_NBASE ),
X( :Process )
);
Item Messages
Cauchy
Syntax: obj = Response Screening(...Cauchy( state=0|1 )...)
Description: Estimates parameters using maximum likelihood and a Cauchy link function. This estimation method assumes that the errors have a Cauchy distribution, which has fatter tails than the normal distribution. This method reduces the emphasis on outliers.
dt = Open( "$Sample_Data/Probe.jmp" );
dt << Response Screening( X( :Process ), Y( Eval( 8 :: 48 ) ), Cauchy( 1 ) );
Common X Scale
Syntax: obj = Response Screening(...Common X Scale( state=0|1 )...)
Description: Notifies the platform that all continuous X variables are on the same scale. This is necessary to compare the slopes of different X variables.
dt = Open( "$Sample_Data/Iris.jmp" );
dt << Response Screening(
Y( :Sepal length, :Sepal width ),
X( :Petal length, :Petal width ),
Common X Scale
);
Common Y Scale
Syntax: obj = Response Screening(...Common Y Scale( state=0|1 )...)
Description: Notifies the platform that all continuous responses are on the same scale. This is necessary to compare the means differences or slopes.
dt = Open( "$Sample_Data/Iris.jmp" );
dt << Response Screening(
X( :Species ),
Y( :Sepal length, :Sepal width, :Petal length, :Petal width ),
Common Y Scale
);
Comparisons
Syntax: obj = Response Screening(...Comparisons( "Each with Control"|"All Combinations" )...)
Description: Specifies the method for comparing means or rates. You can compare each level with a control group level or compare all possible level combinations.
JMP Version Added: 19
dt = Open( "$SAMPLE_DATA/Consumer Preferences.jmp" );
obj = dt << Response Screening(
X( :Age Group ),
Y( :Single Status, :Gender, :I am working on my career ),
Comparisons( "All combinations" ),
Name( "2 by M Table" )(1)
);
Corr
Syntax: obj = Response Screening(...Corr( state=0|1 )...)
Description: Computes the Pearson product-moment correlation in terms of the indices that are defined by the value ordering.
dt = Open( "$Sample_Data/Consumer Preferences.jmp" );
dt << Response Screening(
X( :Employee Tenure, :Position Tenure, :Age Group ),
Y( :Job Satisfaction ),
Corr( 1 )
);
Empirical Bayes Shrinkage
Syntax: obj = Response Screening(...Empirical Bayes Shrinkage( state=0|1 )...)
Description: Shrinks residual variance estimates toward an estimated prior mode, borrowing strength across all estimates. This is useful when screening many continuous Y variables on a common scale.
dt = Open( "$Sample_Data/Probe.jmp" );
dt << Response Screening(
X( :Process ),
Y( Eval( 8 :: 88 ) ),
Common Y Scale,
Empirical Bayes Shrinkage( 1 )
);
Fit Selected Items
Syntax: obj << Fit Selected Items
Description: Adds Fit Y by X reports to the Response Screening report. The added reports correspond to selected points in the plots or selected rows in the Result Table.
dt = Open( "$SAMPLE_DATA/Probe.jmp" );
obj = Response Screening( X( :Process ), Y( Column Group( "Responses" ) ) );
obj << Select Where( FDR Logworth > 200 );
obj << Fit Selected Items;
Force X Categorical
Syntax: obj = Response Screening(...Force X Categorical( state=0|1 )...)
Description: Ignores the modeling type and treats all X columns as categorical.
dt = Open( "$Sample_Data/Big Class.jmp" );
dt << Response Screening( X( :height, :sex ), Y( :age, :weight ), Force X Categorical( 1 ) );
Force X Continuous
Syntax: obj = Response Screening(...Force X Continuous( state=0|1 )...)
Description: Ignores the modeling type and treats all X columns as continuous.
dt = Open( "$Sample_Data/Consumer Preferences.jmp" );
dt << Response Screening(
X( :Age Group, :Job Satisfaction ),
Y( :Gender, :Single Status ),
Force X Continuous( 1 )
);
Force Y Categorical
Syntax: obj = Response Screening(...Force Y Categorical( state=0|1 )...)
Description: Ignores the modeling type and treats all Y columns as categorical.
dt = Open( "$Sample_Data/Big Class.jmp" );
dt << Response Screening( Y( :height, :sex ), X( :age, :weight ), Force Y Categorical( 1 ) );
Force Y Continuous
Syntax: obj = Response Screening(...Force Y Continuous( state=0|1 )...)
Description: Ignores the modeling type and treats all Y columns as continuous.
dt = Open( "$Sample_Data/Big Class.jmp" );
dt << Response Screening( Y( :age ), X( :height, :weight ), Force Y Continuous( 1 ) );
Get Crosstab RTF
Syntax: obj << Get Crosstab RTF( state=0|1 )
Description: Get an RTF source for a crosstab table.
JMP Version Added: 19
Get Crosstab Script
Syntax: obj << Get Crosstab Script( state=0|1 )
Description: Get a JSL display script for a crosstab table.
JMP Version Added: 19
Get PValues
Syntax: obj << Get PValues
Description: Returns a reference to the PValues table.
dt = Open( "$SAMPLE_DATA/Probe.jmp" );
obj = dt << Response Screening(
X( :Process ),
Y( Column Group( "Responses" ) ),
Save Outlier Indicator
);
pvals = obj << Get PValues;
Show( pvals );
Kappa
Syntax: obj = Response Screening(...Kappa( state=0|1 )...)
Description: Adds a new column called Kappa to the Result Table. Kappa is a measure of agreement between Y and X.
dt = Open( "$Sample_Data/Mail Messages.jmp" );
dt << Response Screening( X( :From ), Y( :To ), Kappa( 1 ) );
Kruskal Wallis Test
Syntax: obj = Response Screening(...Kruskal Wallis Test( state=0|1 )...)
Description: Computes the Kruskal-Wallis test, a nonparametric (Wilcoxon) rank-based test for continuous Y by categorical X.
dt = Open( "$Sample_Data/Big Class.jmp" );
dt << Response Screening( X( :sex ), Y( :height, :weight ), Kruskal Wallis Test( 1 ) );
Max Comparison Levels
Syntax: obj = Response Screening(...Max Comparison Levels( number=100 )...)
Description: Specifies the number of levels that are supported in comparisons. "100" by default.
dt = Open( "$SAMPLE_DATA/Probe.jmp" );
dt << Response Screening(
X( :Wafer Number ),
Y( Column Group( "Responses" ) ),
Max Comparison Levels( 24 )
);
Max Logworth
Syntax: obj = Response Screening(...Max Logworth( number )...)
Description: Controls the scale of plots involving logworth values. Logworth values that exceed the specified value are plotted as the specified value to prevent extreme scales in logworth plots.
dt = Open( "$SAMPLE_DATA/Probe.jmp" );
dt << Response Screening(
X( :Process ),
Y( Column Group( "Responses" ) ),
Max Logworth( 1000 )
);
Missing is Category
Syntax: obj = Response Screening(...Missing is Category( state=0|1 )...)
Description: Treats the missing values of a categorical variable as a separate category.
dt = Open( "$Sample_Data/Big Class.jmp" );
Row() = 1;
:age = .;
Row() = 8;
:age = .;
dt << Response Screening( X( :age ), Y( :sex ), Missing is Category( 1 ) );
Negative Binomial Y
Syntax: obj = Response Screening(...Negative Binomial Y( state=0|1 )...)
Description: Fits each Y response as a count having a Negative Binomial distribution.
dt = Open( "$Sample_Data/Quality Control/Failure2.jmp" );
dt << Response Screening(
X( :clean ),
Grouping( :failure ),
Y( :N ),
Negative Binomial Y( 1 )
);
No Report
Syntax: obj = Response Screening(...No Report( state=0|1 )...)
Description: Suppresses the report window. Use this option to run Save commands to obtain results without the report window appearing.
dt = Open( "$SAMPLE_DATA/Probe.jmp" );
dt << Response Screening(
X( :Process ),
Y( Column Group( "Responses" ) ),
Save PValues,
No Report( 1 )
);
PValues Table on Launch
Syntax: obj = Response Screening(...PValues Table on Launch( state=0|1 )...)
Description: Creates a data table for the p-values and individual model fit statistics. "0" by default.
JMP Version Added: 16
dt = Open( "$Sample_Data/Probe.jmp" );
dt << Response Screening(
X( :Process ),
Y( Eval( 8 :: 88 ) ),
Robust,
PValues Table on Launch( 1 )
);
Paired X and Y
Syntax: obj = Response Screening(...Paired X and Y( state=0|1 )...)
Description: Performs tests only for Y columns paired with X columns according to their order in the launch window. For example, Y1 is paired with X1 and Y2 is paired with X2.
dt = Open( "$Sample_Data/Big Class.jmp" );
dt << Response Screening( X( :age, :sex ), Y( :height, :weight ), Paired X and Y( 1 ) );
Poisson Y
Syntax: obj = Response Screening(...Poisson Y( state=0|1 )...)
Description: Fits each Y response as a count having a Poisson distribution.
dt = Open( "$Sample_Data/Quality Control/Failure2.jmp" );
dt << Response Screening( X( :clean ), Grouping( :failure ), Y( :N ), Poisson Y( 1 ) );
Practical Difference Portion
Syntax: obj << Practical Difference Portion( number=0.10 )
Description: Specifies the fraction of the specification range that represents a difference that you consider practically meaningful. "0.10" by default.
dt = Open( "$SAMPLE_DATA/Probe.jmp" );
dt << Response Screening(
X( :Process ),
Y( Eval( 8 :: 48 ) ),
Practical Difference Portion( .2 ),
Save Compare Means
);
Practical Differences and Equivalences
Syntax: obj << Practical Differences and Equivalences( Practical Portion(fraction) | Specific Difference(number) )
Description: Given a difference to detect, tests if the actual difference is significantly greater than or significantly less than that difference to detect in absolute value.
Quartiles per Group
Syntax: obj = Response Screening(...Quartiles per Group( state=0|1 )...)
Description: Computes the quartiles and range for each group for continuous Y by categorical X.
dt = Open( "$Sample_Data/Big Class.jmp" );
dt << Response Screening( X( :sex ), Y( :height, :weight ), Quartiles per Group( 1 ) );
Ratio Adjustment
Syntax: obj = Response Screening(...Ratio Adjustment( "No Adjustment"|"Add 0.5 when any zero"|"Add 0.5 always" )...)
Description: Provides options to add 0.5 to cell counts when calculating risk ratios, odds ratios, and risk differences. This adjustment avoids problems that arise from dividing by zero.
JMP Version Added: 17
dt = Open( "$SAMPLE_DATA/Consumer Preferences.jmp" );
obj = dt << Response Screening(
X( :Age Group ),
Y( :Single Status, :Gender, :I am working on my career ),
Ratio Adjustment( "Add 0.5 Always" ),
Name( "2 by M Table" )(1)
);
Robust
Syntax: obj = Response Screening(...Robust( state=0|1 )...)
Description: Fits regression and ANOVA models using the Huber M-estimation method, which is resistant to outliers.
dt = Open( "$Sample_Data/Probe.jmp" );
dt << Response Screening( X( :Process ), Y( Eval( 8 :: 88 ) ), Robust( 1 ) );
Save 2 by M
Syntax: obj << Name( "Save 2 by M table" )
Description: Saves the information in the 2 by M Results report, as well as other test statistics, to a new data table.
Example 1
dt = Open( "$SAMPLE_DATA/Consumer Preferences.jmp" );
obj = dt << Response Screening(
X( :Age Group ),
Y( :Single Status, :Gender, :I am working on my career )
);
obj << Name( "2 by M Table" )(1);
obj << Name( "Save 2 by M Table" );
Example 2
dt = Open( "$SAMPLE_DATA/Consumer Preferences.jmp" );
obj = dt << Response Screening(
X( :Age Group ),
Y( :Single Status, :Gender, :I am working on my career )
);
obj << "2 by M Table"n( 1 );
obj << "Save 2 by M Table"n;
Save Compare Means
Syntax: obj << Save Compare Means
Description: Creates a data table that contains the results from testing all pairwise comparisons across the levels of the categorical variable.
dt = Open( "$SAMPLE_DATA/Probe.jmp" );
dt << Response Screening(
X( :Process ),
Y( Column Group( "Responses" ) ),
Save Compare Means
);
Save Means
Syntax: obj << Save Means
Description: Creates a data table that contains the counts, means, and standard deviations for each level of the categorical variable.
dt = Open( "$SAMPLE_DATA/Probe.jmp" );
dt << Response Screening( X( :Process ), Y( Column Group( "Responses" ) ), Save Means );
Save Means Differences
Syntax: obj << Save Means Differences
Description: Creates a data table that contains the results from testing all pairwise comparisons across the levels of the categorical variable.
dt = Open( "$SAMPLE_DATA/Probe.jmp" );
dt << Response Screening(
X( :Process ),
Y( Column Group( "Responses" ) ),
Save Means Differences
);
Save Outlier Indicator
Syntax: obj << Save Outlier Indicator
Description: Saves a group of indicator columns to the original data table to indicate outliers.
dt = Open( "$SAMPLE_DATA/Probe.jmp" );
dt << Response Screening(
X( :Process ),
Y( Column Group( "Responses" ) ),
Save Outlier Indicator
);
Save PValues
Syntax: obj << Save PValues
Description: Creates a data table that contains the information in the Result Table.
dt = Open( "$SAMPLE_DATA/Probe.jmp" );
dt << Response Screening( X( :Process ), Y( Column Group( "Responses" ) ), Save PValues );
Save Std Residuals
Syntax: obj << Save Std Residuals
Description: For each fit, adds a column to the original data table that contains the residuals divided by their estimated standard deviation.
dt = Open( "$SAMPLE_DATA/Probe.jmp" );
dt << Response Screening(
X( :Process ),
Y( Column Group( "Responses" ) ),
Save Std Residuals
);
Select Columns
Syntax: obj << Select Columns( condition )
Description: Selects columns in the original data table that correspond to selected rows in the Result Table.
dt = Open( "$SAMPLE_DATA/Probe.jmp" );
obj = Response Screening( X( :Process ), Y( Column Group( "Responses" ) ) );
obj << Select Where( FDR Logworth > 200 );
obj << Select Columns;
Select Where
Syntax: obj << Select Where
Description: Selects items in the report table that correspond to a particular condition.
JMP Version Added: 16
dt = Open( "$SAMPLE_DATA/Probe.jmp" );
obj = Response Screening( X( :Process ), Y( Column Group( "Responses" ) ) );
obj << Select Where( FDR Logworth > 200 );
Show Crosstab Report
Syntax: obj << Show Crosstab Report( state=0|1 )
Description: Experimental Hidden Feature: Show the details for each X and Y combination in a crosstab cell
JMP Version Added: 19
Show Means Differences
Syntax: obj << Show Means Differences
Description: Shows the Logworth by Difference plot and the Means Differences report in the Response Screening report window. This option assumes that the Y variables are on a common scale.
Open( "$Sample_Data/Life Sciences/Genotypes Pedigree.jmp" );
Response Screening(
Y( Column Group( "Markers" ) ),
X( :Sex, :Disease Status ),
Common Y Scale( 1 ),
Show Means Differences( 1 ),
SendToReport(
Dispatch( {}, "", TabListBox, {Set Selected( 4 )} ),
Dispatch( {}, "", TabListBox( 2 ), {Set Selected( 2 )} )
)
);
Show Plots
Syntax: obj << Show Plots( state=0|1 )
Description: Shows or hides the plots in the report window. On by default.
JMP Version Added: 17
dt = Open( "$SAMPLE_DATA/Probe.jmp" );
obj = Response Screening( X( :Process ), Y( Column Group( "Responses" ) ) );
obj << Show Result Tables( 0 );
Show Report Tables
Syntax: obj << Show Report Tables( state=0|1 )
Description: Shows or hides the result tables in the report window. On by default.
JMP Version Added: 17
dt = Open( "$SAMPLE_DATA/Probe.jmp" );
obj = Response Screening( X( :Process ), Y( Column Group( "Responses" ) ) );
obj << Show Result Tables( 0 );
Show Slopes
Syntax: obj << Show Slopes
Description: Shows the Logworth by Slope plot in the Response Screening report window. This option assumes that the Y variables are on a common scale and the X variables are on a common scale.
Open( "$Sample_Data/Life Sciences/Genotypes Pedigree.jmp" );
Response Screening(
Y( :Trait1, :Trait2, :Trait3, :Trait4 ),
X( Column Group( "Markers" ) ),
Show Slopes( 1 ),
SendToReport( Dispatch( {}, "", TabListBox, {Set Selected( 4 )} ) )
);
Specific Difference to Detect
Syntax: obj << Specific Difference to Detect( number )
Description: Specifies a difference to detect rather than a portion of a specification range or sigma. This option assumes that all Y variables are on the same scale.
dt = Open( "$SAMPLE_DATA/Probe.jmp" );
dt << Response Screening(
X( :Process ),
Y( Eval( 8 :: 48 ) ),
Practical Difference Portion( .2 ),
Save Compare Means
);
Subgroup Twoway
Syntax: obj = Response Screening(...Subgroup Twoway( state=0|1 )...)
Description: Fits all of the two-way subgroup combinations. This option is available only when at least one Subgroup variable is defined.
dt = Open( "$Sample_Data/Big Class.jmp" );
dt << Response Screening(
X( :height ),
Y( :weight ),
Subgroup( :age, :sex ),
Subgroup Twoway( 1 )
);
Tabbed Report Layout
Syntax: obj << Tabbed Report Layout( state=0|1 )
Description: On by default.
JMP Version Added: 17
Unthreaded
Syntax: obj = Response Screening(...Unthreaded( state=0|1 )...)
Description: Suppresses multithreading.
dt = Open( "$SAMPLE_DATA/Probe.jmp" );
dt << Response Screening(
Y( :DELL_RPNBR, :DELL_RPPBR, :DELW_M1, :DELW_M2, :DELW_NBASE ),
X( :Process ),
Unthreaded( 1 )
);
Volcano Plots Use FDR Axis
Syntax: obj = Response Screening(...Volcano Plots Use FDR Axis( state=0 )...)
Description: Use FDR-adjusted Logworth instead of unadjusted Logworth on vertical axis for volcano plots. "0" by default.
JMP Version Added: 18
Open( "$Sample_Data/Life Sciences/Genotypes Pedigree.jmp" );
Response Screening(
Y( :Trait1, :Trait2, :Trait3, :Trait4 ),
X( Column Group( "Markers" ) ),
Common Y Scale( 1 ),
Common X Scale( 1 ),
Volcano Plots Use FDR Axis( 1 ),
SendToReport( Dispatch( {}, "", TabListBox, {Set Selected( 4 )} ) )
);
Shared Item Messages
Action
Syntax: obj << Action
Description: All-purpose trapdoor within a platform to insert expressions to evaluate. Temporarily sets the DisplayBox and DataTable contexts to the Platform.
dt = Open( "$SAMPLE_DATA/Big Class.jmp" );
dt << Bivariate(
Y( :height ),
X( :weight ),
Action( Distribution( Y( :height, :weight ), Histograms Only ) )
);
Apply Preset
Syntax: Apply Preset( preset ); Apply Preset( source, label, <Folder( folder {, folder2, ...} )> )
Description: Apply a previously created preset to the object, updating the options and customizations to match the saved settings.
JMP Version Added: 18
Anonymous preset
dt = Open( "$SAMPLE_DATA/Big Class.jmp" );
obj = dt << Oneway( Y( :height ), X( :sex ), t Test( 1 ) );
preset = obj << New Preset();
dt2 = Open( "$SAMPLE_DATA/Dogs.jmp" );
obj2 = dt2 << Oneway( Y( :LogHist0 ), X( :drug ) );
Wait( 1 );
obj2 << Apply Preset( preset );
Search by name
dt = Open( "$SAMPLE_DATA/Big Class.jmp" );
obj = dt << Oneway( Y( :height ), X( :sex ) );
Wait( 1 );
obj << Apply Preset( "Sample Presets", "Compare Distributions" );
Search within folder(s)
dt = Open( "$SAMPLE_DATA/Big Class.jmp" );
obj = dt << Oneway( Y( :height ), X( :sex ) );
Wait( 1 );
obj << Apply Preset( "Sample Presets", "t-Tests", Folder( "Compare Means" ) );
Automatic Recalc
Syntax: obj << Automatic Recalc( state=0|1 )
Description: Redoes the analysis automatically for exclude and data changes. If the Automatic Recalc option is turned on, you should consider using Wait(0) commands to ensure that the exclude and data changes take effect before the recalculation.
dt = Open( "$SAMPLE_DATA/Probe.jmp" );
obj = dt << Response Screening(
Y( :DELL_RPNBR, :DELL_RPPBR, :DELW_M1, :DELW_M2, :DELW_NBASE ),
X( :Process )
);
obj << Automatic Recalc( 1 );
dt << Select Rows( 5 ) << Exclude( 1 );
Broadcast
Syntax: obj << Broadcast(message)
Description: Broadcasts a message to a platform. If return results from individual objects are tables, they are concatenated if possible, and the final format is identical to either the result from the Save Combined Table option in a Table Box or the result from the Concatenate option using a Source column. Other than those, results are stored in a list and returned.
JMP Version Added: 18
dt = Open( "$SAMPLE_DATA/Quality Control/Diameter.jmp" );
objs = Control Chart Builder(
Variables( Subgroup( :DAY ), Y( :DIAMETER ) ),
By( :OPERATOR )
);
objs[1] << Broadcast( Save Summaries );
Column Switcher
Syntax: obj << Column Switcher(column reference, {column reference, ...}, < Title(title) >, < Close Outline(0|1) >, < Retain Axis Settings(0|1) >, < Layout(0|1) >)
Description: Adds a control panel for changing the platform's variables
dt = Open( "$SAMPLE_DATA/Car Poll.jmp" );
obj = dt << Contingency( Y( :size ), X( :marital status ) );
ColumnSwitcherObject = obj << Column Switcher(
:marital status,
{:sex, :country, :marital status}
);
Copy ByGroup Script
Syntax: obj << Copy ByGroup Script
Description: Create a JSL script to produce this analysis, and put it on the clipboard.
dt = Open( "$SAMPLE_DATA/Probe.jmp" );
dt << New Column( "_bycol",
Character,
Nominal,
set values( Repeat( {"A", "B"}, N Rows( dt ) )[1 :: N Rows( dt )] )
);
obj = dt << Response Screening(
Y( :DELL_RPNBR, :DELL_RPPBR, :DELW_M1, :DELW_M2, :DELW_NBASE ),
X( :Process ),
By( _bycol )
);
obj[1] << Copy ByGroup Script;
Copy Script
Syntax: obj << Copy Script
Description: Create a JSL script to produce this analysis, and put it on the clipboard.
dt = Open( "$SAMPLE_DATA/Probe.jmp" );
obj = dt << Response Screening(
Y( :DELL_RPNBR, :DELL_RPPBR, :DELW_M1, :DELW_M2, :DELW_NBASE ),
X( :Process )
);
obj << Copy Script;
Data Table Window
Syntax: obj << Data Table Window
Description: Move the data table window for this analysis to the front.
dt = Open( "$SAMPLE_DATA/Probe.jmp" );
obj = dt << Response Screening(
Y( :DELL_RPNBR, :DELL_RPPBR, :DELW_M1, :DELW_M2, :DELW_NBASE ),
X( :Process )
);
obj << Data Table Window;
Get By Levels
Syntax: obj << Get By Levels
Description: Returns an associative array mapping the by group columns to their values.
JMP Version Added: 18
dt = Open( "$SAMPLE_DATA/Big Class.jmp" );
biv = dt << Bivariate( X( :height ), Y( :weight ), By( :sex ) );
biv << Get By Levels;
Get ByGroup Script
Syntax: obj << Get ByGroup Script
Description: Creates a script (JSL) to produce this analysis and returns it as an expression.
dt = Open( "$SAMPLE_DATA/Probe.jmp" );
dt << New Column( "_bycol",
Character,
Nominal,
set values( Repeat( {"A", "B"}, N Rows( dt ) )[1 :: N Rows( dt )] )
);
obj = dt << Response Screening(
Y( :DELL_RPNBR, :DELL_RPPBR, :DELW_M1, :DELW_M2, :DELW_NBASE ),
X( :Process ),
By( _bycol )
);
t = obj[1] << Get ByGroup Script;
Show( t );
Get Container
Syntax: obj << Get Container
Description: Returns a reference to the container box that holds the content for the object.
General
dt = Open( "$SAMPLE_DATA/Probe.jmp" );
obj = dt << Response Screening(
Y( :DELL_RPNBR, :DELL_RPPBR, :DELW_M1, :DELW_M2, :DELW_NBASE ),
X( :Process )
);
t = obj << Get Container;
Show( (t << XPath( "//OutlineBox" )) << Get Title );
Platform with Filter
dt = Open( "$SAMPLE_DATA/Big Class.jmp" );
gb = Graph Builder(
Show Control Panel( 0 ),
Variables( X( :height ), Y( :weight ) ),
Elements( Points( X, Y, Legend( 1 ) ), Smoother( X, Y, Legend( 2 ) ) ),
Local Data Filter(
Add Filter(
columns( :age, :sex, :height ),
Where( :age == {12, 13, 14} ),
Where( :sex == "F" ),
Where( :height >= 55 ),
Display( :age, N Items( 6 ) )
)
)
);
New Window( "platform boxes",
H List Box(
Outline Box( "Report(platform)", Report( gb ) << Get Picture ),
Outline Box( "platform << Get Container", (gb << Get Container) << Get Picture )
)
);
Get Data Table
Syntax: obj << Get Data Table
Description: Returns a reference to the data table.
dt = Open( "$SAMPLE_DATA/Probe.jmp" );
obj = dt << Response Screening(
Y( :DELL_RPNBR, :DELL_RPPBR, :DELW_M1, :DELW_M2, :DELW_NBASE ),
X( :Process )
);
t = obj << Get Datatable;
Show( N Rows( t ) );
Get Group Platform
Syntax: obj << Get Group Platform
Description: Return the Group Platform object if this platform is part of a Group. Otherwise, returns Empty().
dt = Open( "$SAMPLE_DATA/Big Class.jmp" );
biv = dt << Bivariate( Y( :weight ), X( :height ), By( :sex ) );
group = biv[1] << Get Group Platform;
Wait( 1 );
group << Layout( "Arrange in Tabs" );
Get Script
Syntax: obj << Get Script
Description: Creates a script (JSL) to produce this analysis and returns it as an expression.
dt = Open( "$SAMPLE_DATA/Probe.jmp" );
obj = dt << Response Screening(
Y( :DELL_RPNBR, :DELL_RPPBR, :DELW_M1, :DELW_M2, :DELW_NBASE ),
X( :Process )
);
t = obj << Get Script;
Show( t );
Get Script With Data Table
Syntax: obj << Get Script With Data Table
Description: Creates a script(JSL) to produce this analysis specifically referencing this data table and returns it as an expression.
dt = Open( "$SAMPLE_DATA/Probe.jmp" );
obj = dt << Response Screening(
Y( :DELL_RPNBR, :DELL_RPPBR, :DELW_M1, :DELW_M2, :DELW_NBASE ),
X( :Process )
);
t = obj << Get Script With Data Table;
Show( t );
Get Timing
Syntax: obj << Get Timing
Description: Times the platform launch.
dt = Open( "$SAMPLE_DATA/Probe.jmp" );
obj = dt << Response Screening(
Y( :DELL_RPNBR, :DELL_RPPBR, :DELW_M1, :DELW_M2, :DELW_NBASE ),
X( :Process )
);
t = obj << Get Timing;
Show( t );
Get Web Support
Syntax: obj << Get Web Support
Description: Return a number indicating the level of Interactive HTML support for the display object. 1 means some or all elements are supported. 0 means no support.
dt = Open( "$SAMPLE_DATA/Big Class.jmp" );
obj = dt << Bivariate( Y( :Weight ), X( :Height ) );
s = obj << Get Web Support();
Show( s );
Get Where Expr
Syntax: obj << Get Where Expr
Description: Returns the Where expression for the data subset, if the platform was launched with By() or Where(). Otherwise, returns Empty()
JMP Version Added: 18
dt = Open( "$SAMPLE_DATA/Big Class.jmp" );
biv = dt << Bivariate( X( :height ), Y( :weight ), By( :sex ) );
biv2 = dt << Bivariate( X( :height ), Y( :weight ), Where( :age < 14 & :height > 60 ) );
Show( biv[1] << Get Where Expr, biv2 << Get Where Expr );
Ignore Platform Preferences
Syntax: Ignore Platform Preferences( state=0|1 )
Description: Ignores the current settings of the platform's preferences. The message is ignored when sent to the platform after creation.
dt = Open( "$SAMPLE_DATA/Big Class.jmp" );
dt << Bivariate(
Ignore Platform Preferences( 1 ),
Y( :height ),
X( :weight ),
Action( Distribution( Y( :height, :weight ), Histograms Only ) )
);
Local Data Filter
Syntax: obj << Local Data Filter
Description: To filter data to specific groups or ranges, but local to this platform
dt = Open( "$SAMPLE_DATA/Car Poll.jmp" );
dt << Distribution(
Nominal Distribution( Column( :country ) ),
Local Data Filter(
Add Filter( columns( :sex ), Where( :sex == "Female" ) ),
Mode( Show( 1 ), Include( 1 ) )
)
);
New JSL Preset
Syntax: New JSL Preset( preset )
Description: For testing purposes, create a preset directly from a JSL expression. Like <<New Preset, it will return a Platform Preset that can be applied using <<Apply Preset. But it allows you to specify the full JSL expression for the preset to test outside of normal operation. You will get an Assert on apply if the platform names do not match, but that is expected.
JMP Version Added: 18
dt = Open( "$SAMPLE_DATA/Big Class.jmp" );
obj = dt << Oneway( Y( :Height ), X( :Age ) );
preset = obj << New JSL Preset( Oneway( Y( :A ), X( :B ), Each Pair( 1 ) ) );
Wait( 1 );
obj << Apply Preset( preset );
New Preset
Syntax: obj = New Preset()
Description: Create an anonymous preset representing the options and customizations applied to the object. This object can be passed to Apply Preset to copy the settings to another object of the same type.
JMP Version Added: 18
dt = Open( "$SAMPLE_DATA/Big Class.jmp" );
obj = dt << Oneway( Y( :height ), X( :sex ), t Test( 1 ) );
preset = obj << New Preset();
Paste Local Data Filter
Syntax: obj << Paste Local Data Filter
Description: Apply the local data filter from the clipboard to the current report.
dt = Open( "$SAMPLE_DATA/Cities.jmp" );
dist = Distribution( Continuous Distribution( Column( :POP ) ) );
filter = dist << Local Data Filter(
Add Filter( columns( :Region ), Where( :Region == "MW" ) )
);
filter << Copy Local Data Filter;
dist2 = Distribution( Continuous Distribution( Column( :Lead ) ) );
Wait( 1 );
dist2 << Paste Local Data Filter;
Redo Analysis
Syntax: obj << Redo Analysis
Description: Rerun this same analysis in a new window. The analysis will be different if the data has changed.
dt = Open( "$SAMPLE_DATA/Probe.jmp" );
obj = dt << Response Screening(
Y( :DELL_RPNBR, :DELL_RPPBR, :DELW_M1, :DELW_M2, :DELW_NBASE ),
X( :Process )
);
obj << Redo Analysis;
Redo ByGroup Analysis
Syntax: obj << Redo ByGroup Analysis
Description: Rerun this same analysis in a new window. The analysis will be different if the data has changed.
dt = Open( "$SAMPLE_DATA/Probe.jmp" );
dt << New Column( "_bycol",
Character,
Nominal,
set values( Repeat( {"A", "B"}, N Rows( dt ) )[1 :: N Rows( dt )] )
);
obj = dt << Response Screening(
Y( :DELL_RPNBR, :DELL_RPPBR, :DELW_M1, :DELW_M2, :DELW_NBASE ),
X( :Process ),
By( _bycol )
);
obj[1] << Redo ByGroup Analysis;
Relaunch Analysis
Syntax: obj << Relaunch Analysis
Description: Opens the platform launch window and recalls the settings that were used to create the report.
dt = Open( "$SAMPLE_DATA/Probe.jmp" );
obj = dt << Response Screening(
Y( :DELL_RPNBR, :DELL_RPPBR, :DELW_M1, :DELW_M2, :DELW_NBASE ),
X( :Process )
);
obj << Relaunch Analysis;
Relaunch ByGroup
Syntax: obj << Relaunch ByGroup
Description: Opens the platform launch window and recalls the settings that were used to create the report.
dt = Open( "$SAMPLE_DATA/Probe.jmp" );
dt << New Column( "_bycol",
Character,
Nominal,
set values( Repeat( {"A", "B"}, N Rows( dt ) )[1 :: N Rows( dt )] )
);
obj = dt << Response Screening(
Y( :DELL_RPNBR, :DELL_RPPBR, :DELW_M1, :DELW_M2, :DELW_NBASE ),
X( :Process ),
By( _bycol )
);
obj[1] << Relaunch ByGroup;
Remove Column Switcher
Syntax: obj << Remove Column Switcher
Description: Removes the most recent Column Switcher that has been added to the platform.
dt = Open( "$SAMPLE_DATA/Car Poll.jmp" );
obj = dt << Contingency( Y( :size ), X( :marital status ) );
ColumnSwitcherObject = obj << Column Switcher(
:marital status,
{:sex, :country, :marital status}
);
Wait( 2 );
obj << Remove Column Switcher;
Remove Local Data Filter
Syntax: obj << Remove Local Data Filter
Description: If a local data filter has been created, this removes it and restores the platform to use all the data in the data table directly
dt = Open( "$SAMPLE_DATA/Car Poll.jmp" );
dist = dt << Distribution(
Nominal Distribution( Column( :country ) ),
Local Data Filter(
Add Filter( columns( :sex ), Where( :sex == "Female" ) ),
Mode( Show( 1 ), Include( 1 ) )
)
);
Wait( 2 );
dist << remove local data filter;
Render Preset
Syntax: Render Preset( preset )
Description: For testing purposes, show the platform rerun script that would be used when applying a platform preset to the platform in the log. No changes are made to the platform.
JMP Version Added: 18
dt = Open( "$SAMPLE_DATA/Big Class.jmp" );
obj = dt << Oneway( Y( :Height ), X( :Age ) );
obj << Render Preset( Expr( Oneway( Y( :A ), X( :B ), Each Pair( 1 ) ) ) );
Report
Syntax: obj << Report;Report( obj )
Description: Returns a reference to the report object.
dt = Open( "$SAMPLE_DATA/Probe.jmp" );
obj = dt << Response Screening(
Y( :DELL_RPNBR, :DELL_RPPBR, :DELW_M1, :DELW_M2, :DELW_NBASE ),
X( :Process )
);
r = obj << Report;
t = r[Outline Box( 1 )] << Get Title;
Show( t );
Report View
Syntax: obj << Report View( "Full"|"Summary" )
Description: The report view determines the level of detail visible in a platform report. Full shows all of the detail, while Summary shows only select content, dependent on the platform. For customized behavior, display boxes support a <<Set Summary Behavior message.
dt = Open( "$SAMPLE_DATA/Probe.jmp" );
obj = dt << Response Screening(
Y( :DELL_RPNBR, :DELL_RPPBR, :DELW_M1, :DELW_M2, :DELW_NBASE ),
X( :Process )
);
obj << Report View( "Summary" );
Save ByGroup Script to Data Table
Syntax: Save ByGroup Script to Data Table( <name>, < <<Append Suffix(0|1)>, < <<Prompt(0|1)>, < <<Replace(0|1)> );
Description: Creates a JSL script to produce this analysis, and save it as a table property in the data table. You can specify a name for the script. The Append Suffix option appends a numeric suffix to the script name, which differentiates the script from an existing script with the same name. The Prompt option prompts the user to specify a script name. The Replace option replaces an existing script with the same name.
dt = Open( "$SAMPLE_DATA/Probe.jmp" );
dt << New Column( "_bycol",
Character,
Nominal,
set values( Repeat( {"A", "B"}, N Rows( dt ) )[1 :: N Rows( dt )] )
);
obj = dt << Response Screening(
Y( :DELL_RPNBR, :DELL_RPPBR, :DELW_M1, :DELW_M2, :DELW_NBASE ),
X( :Process ),
By( _bycol )
);
obj[1] << Save ByGroup Script to Data Table;
Save ByGroup Script to Journal
Syntax: obj << Save ByGroup Script to Journal
Description: Create a JSL script to produce this analysis, and add a Button to the journal containing this script.
dt = Open( "$SAMPLE_DATA/Probe.jmp" );
dt << New Column( "_bycol",
Character,
Nominal,
set values( Repeat( {"A", "B"}, N Rows( dt ) )[1 :: N Rows( dt )] )
);
obj = dt << Response Screening(
Y( :DELL_RPNBR, :DELL_RPPBR, :DELW_M1, :DELW_M2, :DELW_NBASE ),
X( :Process ),
By( _bycol )
);
obj[1] << Save ByGroup Script to Journal;
Save ByGroup Script to Script Window
Syntax: obj << Save ByGroup Script to Script Window
Description: Create a JSL script to produce this analysis, and append it to the current Script text window.
dt = Open( "$SAMPLE_DATA/Probe.jmp" );
dt << New Column( "_bycol",
Character,
Nominal,
set values( Repeat( {"A", "B"}, N Rows( dt ) )[1 :: N Rows( dt )] )
);
obj = dt << Response Screening(
Y( :DELL_RPNBR, :DELL_RPPBR, :DELW_M1, :DELW_M2, :DELW_NBASE ),
X( :Process ),
By( _bycol )
);
obj[1] << Save ByGroup Script to Script Window;
Save Script for All Objects
Syntax: obj << Save Script for All Objects
Description: Creates a script for all report objects in the window and appends it to the current Script window. This option is useful when you have multiple reports in the window.
dt = Open( "$SAMPLE_DATA/Probe.jmp" );
obj = dt << Response Screening(
Y( :DELL_RPNBR, :DELL_RPPBR, :DELW_M1, :DELW_M2, :DELW_NBASE ),
X( :Process )
);
obj << Save Script for All Objects;
Save Script for All Objects To Data Table
Syntax: obj << Save Script for All Objects To Data Table( <name> )
Description: Saves a script for all report objects to the current data table. This option is useful when you have multiple reports in the window. The script is named after the first platform unless you specify the script name in quotes.
Example 1
dt = Open( "$SAMPLE_DATA/Probe.jmp" );
dt << New Column( "_bycol",
Character,
Nominal,
set values( Repeat( {"A", "B"}, N Rows( dt ) )[1 :: N Rows( dt )] )
);
obj = dt << Response Screening(
Y( :DELL_RPNBR, :DELL_RPPBR, :DELW_M1, :DELW_M2, :DELW_NBASE ),
X( :Process ),
By( _bycol )
);
obj[1] << Save Script for All Objects To Data Table;
Example 2
dt = Open( "$SAMPLE_DATA/Probe.jmp" );
dt << New Column( "_bycol",
Character,
Nominal,
set values( Repeat( {"A", "B"}, N Rows( dt ) )[1 :: N Rows( dt )] )
);
obj = dt << Response Screening(
Y( :DELL_RPNBR, :DELL_RPPBR, :DELW_M1, :DELW_M2, :DELW_NBASE ),
X( :Process ),
By( _bycol )
);
obj[1] << Save Script for All Objects To Data Table( "My Script" );
Save Script to Data Table
Syntax: Save Script to Data Table( <name>, < <<Prompt(0|1)>, < <<Replace(0|1)> );
Description: Create a JSL script to produce this analysis, and save it as a table property in the data table.
dt = Open( "$SAMPLE_DATA/Probe.jmp" );
obj = dt << Response Screening(
Y( :DELL_RPNBR, :DELL_RPPBR, :DELW_M1, :DELW_M2, :DELW_NBASE ),
X( :Process )
);
obj << Save Script to Data Table( "My Analysis", <<Prompt( 0 ), <<Replace( 0 ) );
Save Script to Journal
Syntax: obj << Save Script to Journal
Description: Create a JSL script to produce this analysis, and add a Button to the journal containing this script.
dt = Open( "$SAMPLE_DATA/Probe.jmp" );
obj = dt << Response Screening(
Y( :DELL_RPNBR, :DELL_RPPBR, :DELW_M1, :DELW_M2, :DELW_NBASE ),
X( :Process )
);
obj << Save Script to Journal;
Save Script to Report
Syntax: obj << Save Script to Report
Description: Create a JSL script to produce this analysis, and show it in the report itself. Useful to preserve a printed record of what was done.
dt = Open( "$SAMPLE_DATA/Probe.jmp" );
obj = dt << Response Screening(
Y( :DELL_RPNBR, :DELL_RPPBR, :DELW_M1, :DELW_M2, :DELW_NBASE ),
X( :Process )
);
obj << Save Script to Report;
Save Script to Script Window
Syntax: obj << Save Script to Script Window
Description: Create a JSL script to produce this analysis, and append it to the current Script text window.
dt = Open( "$SAMPLE_DATA/Probe.jmp" );
obj = dt << Response Screening(
Y( :DELL_RPNBR, :DELL_RPPBR, :DELW_M1, :DELW_M2, :DELW_NBASE ),
X( :Process )
);
obj << Save Script to Script Window;
SendToByGroup
Syntax: SendToByGroup( {":Column == level"}, command );
Description: Sends platform commands or display customization commands to each level of a by-group.
dt = Open( "$SAMPLE_DATA/Big Class.jmp" );
dt << Distribution(
By( :Sex ),
SendToByGroup(
{:sex == "F"},
Continuous Distribution( Column( :weight ), Normal Quantile Plot( 1 ) )
),
SendToByGroup( {:sex == "M"}, Continuous Distribution( Column( :weight ) ) )
);
SendToEmbeddedScriptable
Syntax: SendToEmbeddedScriptable( Dispatch( "Outline name", "Element name", command );
Description: SendToEmbeddedScriptable restores settings of embedded scriptable objects.
dt = Open( "$SAMPLE_DATA/Reliability/Fan.jmp" );
dt << Life Distribution(
Y( :Time ),
Censor( :Censor ),
Censor Code( 1 ),
<<Fit Weibull,
SendToEmbeddedScriptable(
Dispatch(
{"Statistics", "Parametric Estimate - Weibull", "Profilers", "Density Profiler"},
{1, Confidence Intervals( 0 ), Term Value( Time( 6000, Lock( 0 ), Show( 1 ) ) )}
)
)
);
SendToReport
Syntax: SendToReport( Dispatch( "Outline name", "Element name", Element type, command );
Description: Send To Report is used in tandem with the Dispatch command to customize the appearance of a report.
dt = Open( "$SAMPLE_DATA/Big Class.jmp" );
dt << Distribution(
Nominal Distribution( Column( :age ) ),
Continuous Distribution( Column( :weight ) ),
SendToReport( Dispatch( "age", "Distrib Nom Hist", FrameBox, {Frame Size( 178, 318 )} ) )
);
Sync to Data Table Changes
Syntax: obj << Sync to Data Table Changes
Description: Sync with the exclude and data changes that have been made.
dt = Open( "$SAMPLE_DATA/Cities.jmp" );
dist = Distribution( Continuous Distribution( Column( :POP ) ) );
Wait( 1 );
dt << Delete Rows( dt << Get Rows Where( :Region == "W" ) );
dist << Sync To Data Table Changes;
Title
Syntax: obj << Title( "new title" )
Description: Sets the title of the platform.
dt = Open( "$SAMPLE_DATA/Probe.jmp" );
obj = dt << Response Screening(
Y( :DELL_RPNBR, :DELL_RPPBR, :DELW_M1, :DELW_M2, :DELW_NBASE ),
X( :Process )
);
obj << Title( "My Platform" );
Top Report
Syntax: obj << Top Report
Description: Returns a reference to the root node in the report.
dt = Open( "$SAMPLE_DATA/Probe.jmp" );
obj = dt << Response Screening(
Y( :DELL_RPNBR, :DELL_RPPBR, :DELW_M1, :DELW_M2, :DELW_NBASE ),
X( :Process )
);
r = obj << Top Report;
t = r[Outline Box( 1 )] << Get Title;
Show( t );
Transform Column
Syntax: obj = <Platform>(... Transform Column(<name>, Formula(<expression>), [Random Seed(<n>)], [Numeric|Character|Expression], [Continuous|Nominal|Ordinal|Unstructured Text], [column properties]) ...)
Description: Create a transform column in the local context of an object, usually a platform. The transform column is active only for the lifetime of the platform.
JMP Version Added: 16
dt = Open( "$SAMPLE_DATA/Big Class.jmp" );
dt << Distribution(
Transform Column( "age^2", Format( "Fixed Dec", 5, 0 ), Formula( :age * :age ) ),
Continuous Distribution( Column( :"age^2"n ) )
);
View Web XML
Syntax: obj << View Web XML
Description: Returns the XML code that is used to create the interactive HTML report.
dt = Open( "$SAMPLE_DATA/Big Class.jmp" );
obj = dt << Bivariate( Y( :Weight ), X( :Height ) );
xml = obj << View Web XML;
Window View
Syntax: obj = Response Screening(...Window View( "Visible"|"Invisible"|"Private" )...)
Description: Set the type of the window to be created for the report. By default a Visible report window will be created. An Invisible window will not appear on screen, but is discoverable by functions such as Window(). A Private window responds to most window messages but is not discoverable and must be addressed through the report object
dt = Open( "$SAMPLE_DATA/Big Class.jmp" );
biv = dt << Bivariate( Window View( "Private" ), Y( :weight ), X( :height ), Fit Line );
eqn = Report( biv )["Linear Fit", Text Edit Box( 1 )] << Get Text;
biv << Close Window;
New Window( "Bivariate Equation",
Outline Box( "Big Class Linear Fit", Text Box( eqn, <<Set Base Font( "Title" ) ) )
);