Mixed Model
More examples for this topic using the sample data files provided with JMP
Fit a model using the Standard Least Squares personality with specified mixture effects and interactions.
// Open data table
dt = Open("$Sample_Data/Design Experiment/Piepel.jmp");
// Model
Fit Model(
Effects(
:X1 & Mixture, :X2 & Mixture,
:X3 & Mixture, :X1 * :X2,
:X1 * :X3, :X2 * :X3
),
Y( :Y ),
No Intercept,
PERSONALITY(
"Standard Least Squares"
)
);
Load an existing data table and open it in the Custom Design platform for editing.
// Open data table
dt = Open("$Sample_Data/Design Experiment/Software Factors.jmp");
// Load and Edit in Custom Design
DOE(
Custom Design,
Load Factors( Current Data Table() )
);
Perform a variance component analysis using the REML method and fit a model for shrinkage with random effects in the Standard Least Squares personality.
// Open data table
dt = Open("$Sample_Data/Investment Castings.jmp");
// Model: REML
Fit Model(
Censor Code( "" ),
Y( :Shrinkage ),
Effects(
:Casting[:Temperature] & Random,
:Temperature
),
Personality(
"Standard Least Squares"
),
Method( "REML" ),
Set Alpha Level( 0.05 )
);
Fit a standard least squares model with mean as the response variable, grp as the effect, and N as the frequency variable.
// Open data table
dt = Open("$Sample_Data/Noah Decay.jmp");
// Fit Model
Fit Model(
Freq( :N ),
Y( :mean ),
Effects( :grp ),
Personality(
"Standard Least Squares"
),
Run( :mean << {{:grp << {}}} )
);
Create a Pareto Plot for cause analysis using failure data and frequency counts.
// Open data table
dt = Open("$Sample_Data/Quality Control/Failure.jmp");
// Pareto Plot
Pareto Plot(
Cause( :failure ),
Freq( :N )
);
Fit a Weibull-distributed parametric survival model with the Load effect.
// Open data table
dt = Open("$Sample_Data/Reliability/Comptime.jmp");
// Parametric Survival Model
Fit Model(
Y( :ExecTime ),
Effects( :Load ),
Personality( "Parametric Survival" ),
Distribution( Weibull )
);
Build a multivariate scatterplot matrix with pairwise estimation method for household income, IQ, eighth-grade math, high school graduates, gross state product, vegetable consumption, smokers, physical activity, obese, college degrees, and alcohol consumption.
// Open data table
dt = Open("$Sample_Data/US Demographics.jmp");
// Multivariate
Multivariate(
Y(
:Household Income, :IQ,
:Eighth Grade Math,
:High School Graduates,
:Gross State Product,
:Vegetable Consumption, :Smokers,
:Physical Activity, :Obese,
:College Degrees,
:Alcohol Consumption
),
Estimation Method( "Pairwise" ),
Scatterplot Matrix(
Density Ellipses( 1 ),
Shaded Ellipses( 0 ),
Ellipse Color( 3 )
)
);
Perform choice analysis with gender effects using the Choice function.
// Open data table
dt = Open("$Sample_Data/Laptop Runs.jmp");
// Choice with Gender
Open( "$Sample_Data/Laptop Profile.jmp" );
Open(
"$Sample_Data/Laptop Subjects.jmp"
);
Choice(
Response Data Table(
Data Table( "Laptop Runs" )
),
Profile DataTable( Laptop Profile ),
Subject DataTable(
Data Table( "Laptop Subjects" )
),
Response Subject ID( :Person ),
Response Grouping(
:Survey, :Choice Set
),
Response Profile ID Choices(
:Choice1, :Choice2
),
Profile ID( :Choice ID ),
Profile Grouping(
:Survey, :Choice Set
),
Profile Effects(
:Hard Disk, :Speed, :Battery Life,
:Price
),
Subject Subject ID( :Person ),
Subject Effects( :Gender ),
"Firth Bias-Adjusted Estimates"n( 1 ),
Response Profile ID Chosen(
:Response
),
Likelihood Ratio Tests( 1 )
);
Partition a dataset into clusters based on multiple predictor variables using the Partition platform.
// Open data table
dt = Open("$Sample_Data/Liver Cancer.jmp");
// Partition
Partition(
Y( :Severity ),
X(
:BMI, :Age, :Time, :Markers,
:Hepatitis, :Jaundice
),
Specify Profit Matrix(
[1 -3, -5 1, . .],
"High",
"Low",
"Undecided"
),
Show Fit Details( 1 ),
Informative Missing( 1 ),
Initial Splits(
:Time >= 2.571,
{:Time < 12.714, {:Time < 2.857,
{}, {:Markers == {1}, {}, {:Age
>= 62.8603}}}, {:Markers == {0},
{}, {:Jaundice == {0}}}},
{:Age >= 66.7315, {}, {:Markers
== {1}, {:BMI >= 20.679}}}
)
);