Nonlinear
Associated Constructors
Nonlinear
Syntax: Nonlinear( Y( column ), X( column with predictor formula ) )
Description: Fits nonlinear models using least squares or a custom loss function.
dt = Open( "$SAMPLE_DATA/Nonlinear Examples/US Population.jmp" );
obj = dt << Nonlinear( Y( :pop ), X( :"X-formula"n ), Finish() );
Columns
By
Syntax: obj = Nonlinear(...<By( column(s) )>...)
Description: Performs a separate analysis for each level of the specified column.
dt = Open( "$SAMPLE_DATA/Nonlinear Examples/US Population.jmp" );
dt << New Column( "_bycol",
Character,
Nominal,
set values( Repeat( {"A", "B"}, N Rows( dt ) )[1 :: N Rows( dt )] )
);
obj = dt << Nonlinear( Y( :pop ), X( :"X-formula"n ), Finish(), By( _bycol ) );
Freq
Syntax: obj = Nonlinear(...<Freq( column )>...)
Description: Specifies a column whose values assign a frequency to each row for the analysis.
dt = Open( "$SAMPLE_DATA/Nonlinear Examples/US Population.jmp" );
dt << New Column( "_freqcol", Numeric, Continuous, Formula( Random Integer( 1, 5 ) ) );
obj = dt << Nonlinear( Y( :pop ), X( :"X-formula"n ), Finish(), Freq( _freqcol ) );
Group
Syntax: obj = Nonlinear(...<Group( column )>...)
Description: Specifies a grouping variable. The fitted model has separate parameters for each level of the grouping variable.
dt = Open( "$SAMPLE_DATA/Nonlinear Examples/Bioassay.jmp" );
dt << Run Script( "Fit Curve" );
obj = dt << Nonlinear(
Y( :Toxicity ),
X( :Toxicity Predictor Formula ),
Group( :Formulation ),
Newton,
Finish
);
Loss
Syntax: obj = Nonlinear(...<Loss( column )>...)
Description: Specifies a formula column that contains a loss function.
dt = Open( "$SAMPLE_DATA/Ship Damage.jmp" );
obj = dt << Nonlinear(
X( :model ),
Loss( :Poisson ),
Loss is Neg LogLikelihood( 1 ),
Newton,
Finish
);
Predictor Formula
Syntax: obj = Nonlinear(...<Predictor Formula( column )>...)
Description: Specifies a column that contains either the X variable or a model formula with parameters.
dt = Open( "$SAMPLE_DATA/Nonlinear Examples/US Population.jmp" );
obj = dt << Nonlinear( Y( :pop ), X( :"X-formula"n ), Finish() );
Response
Syntax: obj = Nonlinear(...<Response( column )>...)
Description: Specifies the response variable.
dt = Open( "$SAMPLE_DATA/Nonlinear Examples/US Population.jmp" );
obj = dt << Nonlinear( Y( :pop ), X( :"X-formula"n ), Finish() );
Weight
Syntax: obj = Nonlinear(...<Weight( column )>...)
Description: Specifies a column whose values assign a weight to each row for the analysis.
dt = Open( "$SAMPLE_DATA/Nonlinear Examples/US Population.jmp" );
dt << New Column( "_weightcol", Numeric, Continuous, Formula( Random Beta( 1, 1 ) ) );
obj = dt << Nonlinear( Y( :pop ), X( :"X-formula"n ), Finish(), Weight( _weightcol ) );
X
Syntax: obj = Nonlinear(...<X( column )>...)
Description: Specifies a column that contains either the X variable or a model formula with parameters.
dt = Open( "$SAMPLE_DATA/Nonlinear Examples/US Population.jmp" );
obj = dt << Nonlinear( Y( :pop ), X( :"X-formula"n ), Finish() );
Y
Syntax: obj = Nonlinear(...<Y( column )>...)
Description: Specifies the response variable.
dt = Open( "$SAMPLE_DATA/Nonlinear Examples/US Population.jmp" );
obj = dt << Nonlinear( Y( :pop ), X( :"X-formula"n ), Finish() );
Item Messages
Accept Current Estimates
Syntax: obj << Accept Current Estimates
Description: Produces the solution report using the current estimates, even if the estimates did not converge.
dt = Open( "$SAMPLE_DATA/Nonlinear Examples/US Population.jmp" );
obj = dt << Nonlinear( Y( :pop ), X( :"X-formula"n ), Parameter Bounds( B0( 15, . ) ) );
obj << Finish;
obj << Accept Current Estimates;
CL Alpha
Syntax: obj << CL Alpha( number=.05 )
Description: Specifies the alpha level for the confidence limits for the parameter estimates. ".05" by default.
dt = Open( "$SAMPLE_DATA/Nonlinear Examples/US Population.jmp" );
obj = dt << Nonlinear( Y( :pop ), X( :"X-formula"n ), Finish );
obj << CL Alpha( .01 );
obj << Confidence Limits;
CL Limit
Syntax: obj << CL Limit( number=.00001 )
Description: Specifies the convergence criterion that is used to calculate the confidence limits for the parameter estimates. ".00001" by default.
dt = Open( "$SAMPLE_DATA/Nonlinear Examples/US Population.jmp" );
obj = dt << Nonlinear( Y( :pop ), X( :"X-formula"n ), Finish );
obj << CL Limit( .002 );
obj << Confidence Limits;
Confidence Limits
Syntax: obj << Confidence Limits
Description: Computes confidence intervals for all of the parameter estimates.
dt = Open( "$SAMPLE_DATA/Nonlinear Examples/US Population.jmp" );
obj = dt << Nonlinear( Y( :pop ), X( :"X-formula"n ), Finish );
obj << Confidence Limits;
Contour Profiler
Syntax: obj << Contour Profiler( state=0|1 )
Description: Shows or hides the contour profiler, which shows the contours of the response graphically for two factors at a time.
dt = Open( "$SAMPLE_DATA/Nonlinear Examples/CES Production Function.jmp" );
obj = dt << Nonlinear( Y( :"log($ value)"n ), X( :Model ), Finish );
Wait( 0 );
obj << Contour Profiler( 1 );
Custom Estimate
Syntax: obj << Custom Estimate( expression )
Description: Estimates a user-specified function of the parameters. The expression and the standard error of the expression are calculated using the current parameter estimates.
dt = Open( "$SAMPLE_DATA/Nonlinear Examples/CES Production Function.jmp" );
obj = dt << Nonlinear( Y( :"log($ value)"n ), X( :Model ), Finish );
obj << Custom Estimate( B0 + A + D );
Custom Estimation Profiler
Syntax: obj << Custom Estimation Profiler( Custom Estimation( {initial values}, expression ), <Transformation( "Log"|"Logit"|"None" ), Profiler( script )> )
Description: Enables you to construct a profiler for a custom expression. Enter an expression that involves parameters and at least one factor. By default, the Transformation option is set to None.
dt = Open( "$SAMPLE_DATA/Nonlinear Examples/Logistic w Loss.jmp" );
obj = dt << Nonlinear(
Loss( :Loss ),
Expand Intermediate Formulas( 1 ),
Loss is Neg LogLikelihood( 1 ),
Newton,
Finish,
Plot( 0 ),
Custom Estimation Profiler(
Custom Estimation( {x = 30}, 1 / (1 + Exp( b0 + b1 * x )) ),
Transformation( "Logit" ),
Profiler(
1,
Confidence Intervals( 1 ),
Term Value(
x(
140,
Min( -37.4344314814814 ),
Max( 392.622262689059 ),
Lock( 0 ),
Show( 1 )
)
)
)
)
);
Custom Inverse Prediction
Syntax: obj << Custom Inverse Prediction( Response( l1, l2, ... ), <Term Value( column( number ) )> )
Description: Estimates an X value for each specified response value. Standard errors and confidence limits for the estimated X values are also calculated.
dt = Open( "$SAMPLE_DATA/Nonlinear Examples/US Population.jmp" );
obj = dt << Nonlinear( Y( :pop ), X( :"X-formula"n ), Finish );
Wait( 0 );
obj << Custom Inverse Prediction( Response( 100, 150, 200 ) );
Delta
Syntax: obj << Delta( number=5.0e-6 )
Description: Specifies the delta value that is used in the Numeric Derivatives Only option. "5.0e-6" by default.
dt = Open( "$SAMPLE_DATA/Nonlinear Examples/US Population.jmp" );
obj = dt << Nonlinear( Y( :pop ), X( :"X-formula"n ) );
obj << Numeric Derivatives Only( 1 );
obj << Delta( 0.2 );
obj << Finish;
Expand Intermediate Formulas
Syntax: obj << Expand Intermediate Formulas( state=0|1 )
Description: Uses expanded intermediate formulas in solving and in the formulas saved. This affects formulas in the output when the model is dependent on a column with a formula, as it will look through to the original columns.
dt = Open( "$SAMPLE_DATA/Nonlinear Examples/Logit Model w Loss1.jmp" );
obj = dt << Nonlinear(
Loss( :Loss ),
Show Prediction Expression( 1 ),
Expand Intermediate Formulas( 1 ),
Finish
);
Finish
Syntax: obj << Finish
Description: Begins the fitting process and only moves to the next command if the solution has converged or finished. In scripts, the Finish option is recommended instead of the Go option.
dt = Open( "$SAMPLE_DATA/Nonlinear Examples/CES Production Function.jmp" );
obj = dt << Nonlinear( Y( :"log($ value)"n ), X( :Model ) );
obj << Finish;
obj << Profiler;
Get CI
Syntax: obj << Get CI
Description: Returns the confidence intervals for the parameter estimates. Note: The Confidence Intervals option must be selected before the Get CI option is specified.
dt = Open( "$SAMPLE_DATA/Nonlinear Examples/US Population.jmp" );
obj = dt << Nonlinear( Y( :pop ), X( :"X-formula"n ), Finish );
obj << Confidence Limits;
G = obj << Get CI;
Show( G );
Get Corr
Syntax: obj << Get Corr
Description: Returns the correlation of the estimates.
dt = Open( "$SAMPLE_DATA/Nonlinear Examples/US Population.jmp" );
obj = dt << Nonlinear( Y( :pop ), X( :"X-formula"n ), Finish );
G = obj << Get Corr;
Show( G );
Get Cov
Syntax: obj << Get Cov
Description: Returns the covariance of the estimates.
JMP Version Added: 16
dt = Open( "$SAMPLE_DATA/Nonlinear Examples/US Population.jmp" );
obj = dt << Nonlinear( Y( :pop ), X( :"X-formula"n ), Finish );
G = obj << Get Cov;
Show( G );
Get Estimates
Syntax: obj << Get Estimates
Description: Returns the parameter estimates.
dt = Open( "$SAMPLE_DATA/Nonlinear Examples/US Population.jmp" );
obj = dt << Nonlinear( Y( :pop ), X( :"X-formula"n ), Finish );
G = obj << Get Estimates;
Show( G );
Get Parameter Names
Syntax: obj << Get Parameter Names
Description: Returns the parameter names.
dt = Open( "$SAMPLE_DATA/Nonlinear Examples/US Population.jmp" );
obj = dt << Nonlinear( Y( :pop ), X( :"X-formula"n ), Finish );
G = obj << Get Parameter Names;
Show( G );
Get SSE
Syntax: obj << Get SSE
Description: Returns the sum of squares error (SSE).
dt = Open( "$SAMPLE_DATA/Nonlinear Examples/US Population.jmp" );
obj = dt << Nonlinear( Y( :pop ), X( :"X-formula"n ), Finish );
G = obj << Get SSE;
Show( G );
Get Std Errors
Syntax: obj << Get Std Errors
Description: Returns the standard errors of the parameter estimates.
dt = Open( "$SAMPLE_DATA/Nonlinear Examples/US Population.jmp" );
obj = dt << Nonlinear( Y( :pop ), X( :"X-formula"n ), Finish );
G = obj << Get Std Errors;
Show( G );
Go
Syntax: obj << Go
Description: Begins iterating in the background to find the nonlinear solution. In scripts, the Finish option is recommended instead of the Go option.
dt = Open( "$SAMPLE_DATA/Nonlinear Examples/CES Production Function.jmp" );
obj = dt << Nonlinear( Y( :"log($ value)"n ), X( :Model ) );
obj << Go;
Gradient Limit
Syntax: obj << Gradient Limit( number=1e-6 )
Description: Specifies the stop limit value for the gradient criterion. "1e-6" by default.
dt = Open( "$SAMPLE_DATA/Nonlinear Examples/CES Production Function.jmp" );
obj = dt << Nonlinear( Y( :"log($ value)"n ), X( :Model ) );
obj << Gradient Limit( 0.0002 );
obj << Finish;
Iteration Limit
Syntax: obj << Iteration Limit( number=60 )
Description: Specifies the maximum number of iterations. "60" by default.
dt = Open( "$SAMPLE_DATA/Nonlinear Examples/CES Production Function.jmp" );
obj = dt << Nonlinear( Y( :"log($ value)"n ), X( :Model ) );
obj << Iteration Limit( 10 );
obj << Finish;
Iteration Log
Syntax: obj << Iteration Log( state=0|1 )
Description: Shows or hides the Iterations table. Once this option is selected, the platform records subsequent iterations in the table.
dt = Open( "$SAMPLE_DATA/Nonlinear Examples/US Population.jmp" );
obj = dt << Nonlinear( Y( :pop ), X( :"X-formula"n ) );
obj << Iteration Log( 1 );
obj << Finish;
obj << Plot( 0 );
Report( obj )["Iterations"] << Close( 0 );
Lock Parameter
Syntax: obj << Lock Parameter( Name, ... )
Description: Locks individual parameters at a specified value so they remain constant during the iteration process.
dt = Open( "$SAMPLE_DATA/Nonlinear Examples/CES Production Function.jmp" );
obj = dt << Nonlinear( Y( :"log($ value)"n ), X( :Model ) );
obj << Set Parameter( B0 = 0.2 );
obj << Lock Parameter( B0 );
obj << Finish;
Loss is Neg LogLikelihood
Syntax: obj << Loss is Neg LogLikelihood( state=0|1 )
Description: Assumes that the sum of the specified loss formula is the negative log-likelihood and uses chi-square statistics instead of F statistics in the analysis.
dt = Open( "$SAMPLE_DATA/Nonlinear Examples/Logit Model w Loss1.jmp" );
obj = dt << Nonlinear(
Loss( :Loss ),
Show Prediction Expression( 1 ),
Expand Intermediate Formulas( 1 )
);
obj << Loss is Neg LogLikelihood( 0 );
obj << Finish;
Newton
Syntax: obj << Newton
Description: Specifies either Gauss-Newton (for regular least squares) or Newton-Raphson (for models that contain loss functions) as the optimization method.
dt = Open( "$SAMPLE_DATA/Nonlinear Examples/US Population.jmp" );
obj = dt << Nonlinear( Y( :pop ), X( :"X-formula"n ) );
obj << Newton;
obj << Finish;
Numeric Chain Deriv Delta
Syntax: obj << Numeric Chain Deriv Delta( =1e-5 )
Description: Specifies the delta parameter used when approximating the derivative of a nonlinear formula that does not have a built-in derivative. "1e-5" by default.
JMP Version Added: 14
Numeric Derivatives Only
Syntax: obj << Numeric Derivatives Only( state=0|1 )
Description: Specifies that only numeric derivatives are used in the fitting method.
dt = Open( "$SAMPLE_DATA/Nonlinear Examples/US Population.jmp" );
obj = dt << Nonlinear( Y( :pop ), X( :"X-formula"n ) );
obj << Numeric Derivatives Only( 1 );
obj << Finish;
Obj Change Limit
Syntax: obj << Obj Change Limit( number=1e-15 )
Description: Specifies the stop limit value for the objective change criterion. "1e-15" by default.
dt = Open( "$SAMPLE_DATA/Nonlinear Examples/CES Production Function.jmp" );
obj = dt << Nonlinear( Y( :"log($ value)"n ), X( :Model ) );
obj << Obj Change Limit( 1e-10 );
obj << Finish;
Parameter Bounds
Syntax: obj << Parameter Bounds( <parameter name( lower, upper )> )
Description: Sets bounds on the specified parameters.
dt = Open( "$SAMPLE_DATA/Nonlinear Examples/US Population.jmp" );
obj = dt << Nonlinear( Y( :pop ), X( :"X-formula"n ) );
obj << Parameter Bounds( B0( 0, . ) );
obj << Finish;
Parameter Contour Profiler
Syntax: obj << Parameter Contour Profiler( state=0|1 )
Description: Shows or hides a contour profiler that profiles the SSE or loss as a function of the parameters.
dt = Open( "$SAMPLE_DATA/Nonlinear Examples/CES Production Function.jmp" );
obj = dt << Nonlinear( Y( :"log($ value)"n ), X( :Model ), Finish );
Wait( 0 );
obj << Parameter Contour Profiler( 1 );
Parameter Profiler
Syntax: obj << Parameter Profiler( state=0|1 )
Description: Shows or hides a prediction profiler that profiles the SSE or loss as a function of the parameters.
dt = Open( "$SAMPLE_DATA/Nonlinear Examples/CES Production Function.jmp" );
obj = dt << Nonlinear( Y( :"log($ value)"n ), X( :Model ), Finish );
Wait( 0 );
obj << Parameter Profiler( 1 );
Parameter Surface Profiler
Syntax: obj << Parameter Surface Profiler( state=0|1 )
Description: Shows or hides a three-dimensional surface plot that profiles the SSE or loss as a function of the parameters. This option is available only for models that contain two or more parameters.
dt = Open( "$SAMPLE_DATA/Nonlinear Examples/CES Production Function.jmp" );
obj = dt << Nonlinear( Y( :"log($ value)"n ), X( :Model ), Finish );
Wait( 0 );
obj << Parameter Surface Profiler( 1 );
Plot
Syntax: obj << Plot( state=0|1 )
Description: Shows or hides a graph that plots the prediction formula as a function of exactly one other variable. On by default.
dt = Open( "$SAMPLE_DATA/Nonlinear Examples/US Population.jmp" );
obj = dt << Nonlinear( Y( :pop ), X( :"X-formula"n ) );
Wait( 1 );
obj << Plot( 0 );
obj << Finish;
Profile Likelihood
Syntax: obj << Profile Likelihood( state=0|1 )
Description: Shows or hides a plot of the relative likelihood function, scaled to have a maximum value of one, across values of a single parameter while all other parameters are optimized to minimize the loss function. This option is available only when the Nonlinear platform is launched with a loss function that contains two or more parameters.
dt = Open( "$Sample_Data/Reliability/Fan.jmp" );
dt << New Column( "Unconstrained Weibull Loss",
formula(
Parameter(
{mu = 10, logSigma = 0},
If(
Censor == 0, -Log( Weibull Density( Time, 1 / Exp( logSigma ), Exp( mu ) ) ),
Censor == 1,
-Log( 1 - Weibull Distribution( Time, 1 / Exp( logSigma ), Exp( mu ) ) )
)
)
)
);
obj = dt << Nonlinear(
Loss( :Unconstrained Weibull Loss ),
Numeric Derivatives Only( 1 ),
Loss is Neg LogLikelihood( 1 ),
Newton,
Finish
);
Wait( 0 );
obj << Profile Likelihood( 1 );
Profile Likelihood Contour
Syntax: obj << Profile Likelihood Contour( state=0|1 )
Description: Shows or hides the likelihood confidence contours for the relative likelihood function across two parameters while all other parameters are optimized to minimize the loss function. This option is available only when the Nonlinear platform is launched with a loss function that contains three or more parameters.
dt = Open( "$Sample_Data/Reliability/Fan.jmp" );
dt << New Column( "Partial Unconstrained DS Weibull Loss",
formula(
Parameter(
{mu = 10, logSigma = 0, p = 0.5},
If(
p < 0 | p > 1, .,
Censor == 0,
-Log( p * Weibull Density( Time, 1 / Exp( logSigma ), Exp( mu ) ) ),
Censor == 1,
-Log(
1 - p * Weibull Distribution( Time, 1 / Exp( logSigma ), Exp( mu ) )
)
)
)
)
);
obj = dt << Nonlinear(
Loss( :Partial Unconstrained DS Weibull Loss ),
Numeric Derivatives Only( 1 ),
Loss is Neg LogLikelihood( 1 ),
Newton,
Finish
);
Wait( 0 );
obj << Profile Likelihood Contour( 1 );
Profiler
Syntax: obj << Profiler( state=0|1 )
Description: Shows or hides the prediction profiler, which is used to graphically explore the prediction equation by slicing it one factor at a time. The prediction profiler contains features for optimization.
dt = Open( "$SAMPLE_DATA/Nonlinear Examples/CES Production Function.jmp" );
obj = dt << Nonlinear( Y( :"log($ value)"n ), X( :Model ), Finish );
obj << Profiler( 1 );
QuasiNewton BFGS
Syntax: obj << QuasiNewton BFGS
Description: Specifies QuasiNewton BFGS as the optimization method. This method is best for large numbers of parameters.
dt = Open( "$SAMPLE_DATA/Nonlinear Examples/US Population.jmp" );
obj = dt << Nonlinear( Y( :pop ), X( :"X-formula"n ) );
obj << QuasiNewton BFGS;
obj << Finish;
QuasiNewton SR1
Syntax: obj << QuasiNewton SR1
Description: Specifies QuasiNewton SR1 as the optimization method. This method avoids recalculating the derivatives at each iteration.
dt = Open( "$SAMPLE_DATA/Nonlinear Examples/US Population.jmp" );
obj = dt << Nonlinear( Y( :pop ), X( :"X-formula"n ) );
obj << QuasiNewton SR1;
obj << Finish;
Relative Gradient
Syntax: obj << Relative Gradient( number=1e-6 )
Description: Specifies the stop limit value for the relative gradient criterion. "1e-6" by default.
dt = Open( "$SAMPLE_DATA/Nonlinear Examples/CES Production Function.jmp" );
obj = dt << Nonlinear( Y( :"log($ value)"n ), X( :Model ) );
obj << Relative Gradient( 0.0001 );
obj << Finish;
Remember Solution
Syntax: obj << Remember Solution( name )
Description: Creates a report called Remembered Models, which contains the current parameter estimates and summary statistics. Results of multiple models can be remembered and compared.
dt = Open( "$SAMPLE_DATA/Nonlinear Examples/CES Production Function.jmp" );
obj = dt << Nonlinear( Y( :"log($ value)"n ), X( :Model ), Finish );
obj << Remember Solution( "New Model" );
Reset
Syntax: obj << Reset
Description: Resets the convergence criterion after solving. This option is useful when trying to refit the model with different starting values.
dt = Open( "$SAMPLE_DATA/Nonlinear Examples/CES Production Function.jmp" );
obj = dt << Nonlinear( Y( :"log($ value)"n ), X( :Model ) );
obj << Set Parameter( B0 = 0.2 );
obj << Finish;
Wait( 2 );
obj << Reset;
Revert To Original Parameters
Syntax: obj << Revert To Original Parameters
Description: Resets the current values of the parameters in the Control Panel to the original values.
dt = Open( "$SAMPLE_DATA/Nonlinear Examples/CES Production Function.jmp" );
obj = dt << Nonlinear( Y( :"log($ value)"n ), X( :Model ), Finish );
Wait( 1 );
obj << Revert to Original Parameters;
SSE Grid
Syntax: obj << SSE Grid
Description: Creates a grid of values around the solution estimates and computes the error sum of squares for each value.
dt = Open( "$SAMPLE_DATA/Nonlinear Examples/CES Production Function.jmp" );
obj = dt << Nonlinear( Y( :"log($ value)"n ), X( :Model ), Finish );
obj << SSE Grid;
Save Estimates
Syntax: obj << Save Estimates
Description: Saves the current parameter estimates to the parameter values in the formula column.
dt = Open( "$SAMPLE_DATA/Nonlinear Examples/US Population.jmp" );
obj = dt << Nonlinear( Y( :pop ), X( :"X-formula"n ), Finish );
Wait( 1 );
obj << Save Estimates;
Save Estimates To Table
Syntax: obj << Save Estimates To Table
Description: Creates a new data table that contains the parameter estimates.
JMP Version Added: 16
dt = Open( "$SAMPLE_DATA/Nonlinear Examples/US Population.jmp" );
obj = dt << Nonlinear( Y( :pop ), X( :"X-formula"n ), Finish );
obj << Save Estimates To Table;
Save Indiv Confid Limit Formula
Syntax: obj << Save Indiv Confid Limit Formula
Description: Saves new formula columns to the data table. The new columns contain the formulas to calculate the confidence interval for an individual prediction. This is a confidence interval of an individual response value for a given X value.
dt = Open( "$SAMPLE_DATA/Nonlinear Examples/US Population.jmp" );
obj = dt << Nonlinear( Y( :pop ), X( :"X-formula"n ), Finish );
obj << Save Indiv Confid Limit Formula;
Save Indiv Confid Limits
Syntax: obj << Save Indiv Confid Limits
Description: Saves new columns to the data table. The new columns contain the asymptotic confidence limits for an individual prediction. This is the confidence interval of an individual response value at a given X value.
dt = Open( "$SAMPLE_DATA/Nonlinear Examples/US Population.jmp" );
obj = dt << Nonlinear( Y( :pop ), X( :"X-formula"n ), Finish );
obj << Save Indiv Confid Limits;
Save Inverse Prediction Formula
Syntax: obj << Save Inverse Prediction Formula
Description: Saves new formula columns to the data table. The new columns contain the formulas for the inverse prediction of the model, the standard error of an inverse prediction, and the standard error of an individual inverse prediction.
dt = Open( "$SAMPLE_DATA/Nonlinear Examples/US Population.jmp" );
obj = dt << Nonlinear( Y( :pop ), X( :"X-formula"n ), Finish );
obj << Save Inverse Prediction Formula;
Save Pred Confid Limit Formula
Syntax: obj << Save Pred Confid Limit Formula
Description: Saves new formula columns to the data table. The new columns contain the formulas to calculate the confidence interval for a model prediction. This is a confidence interval for the average response value at a given X value.
dt = Open( "$SAMPLE_DATA/Nonlinear Examples/US Population.jmp" );
obj = dt << Nonlinear( Y( :pop ), X( :"X-formula"n ), Finish );
obj << Save Pred Confid Limit Formula;
Save Pred Confid Limits
Syntax: obj << Save Pred Confid Limits
Description: Saves new columns to the data table. The new columns contain the asymptotic confidence limits for the model prediction. This is the confidence interval for the average response value at a given X value.
dt = Open( "$SAMPLE_DATA/Nonlinear Examples/US Population.jmp" );
obj = dt << Nonlinear( Y( :pop ), X( :"X-formula"n ), Finish );
obj << Save Pred Confid Limits;
Save Prediction Formula
Syntax: obj << Save Prediction Formula
Description: Saves a new formula column to the data table. The new column contains the prediction formula using the current parameter estimates.
dt = Open( "$SAMPLE_DATA/Nonlinear Examples/US Population.jmp" );
obj = dt << Nonlinear( Y( :pop ), X( :"X-formula"n ), Finish );
obj << Save Prediction Formula;
Save Residual Formula
Syntax: obj << Save Residual Formula
Description: Saves a new formula column to the data table. The new column contains the formula for computing the residuals.
dt = Open( "$SAMPLE_DATA/Nonlinear Examples/US Population.jmp" );
obj = dt << Nonlinear( Y( :pop ), X( :"X-formula"n ), Finish );
obj << Save Residual Formula;
Save Specific Solving Formula
Syntax: obj << Save Specific Solving Formula( <column to solve for, {name1=expr1, ...}, Save Formula for Std Error Mean, Save Formula for Std Error Individual> )
Description: Saves new formula columns to the data table. The new columns contain formulas for the prediction and standard error for evaluating an X variable given the response variable and either other X values in the data or a constant.
Example 1
dt = Open( "$SAMPLE_DATA/Nonlinear Examples/US Population.jmp" );
obj = dt << Nonlinear( Y( :pop ), X( :"X-formula"n ), Finish );
obj << Save Specific Solving Formula;
Example 2
dt = Open( "$SAMPLE_DATA/Nonlinear Examples/US Population.jmp" );
obj = dt << Nonlinear( Y( :pop ), X( :"X-formula"n ), Finish );
obj << Save Specific Solving Formula( :year, {:pop = 200}, Save Formula for Std Error Mean );
Example 3
dt = Open( "$SAMPLE_DATA/Nonlinear Examples/US Population.jmp" );
obj = dt << Nonlinear( Y( :pop ), X( :"X-formula"n ), Finish );
obj << Save Specific Solving Formula( :pop, Save Formula for Std Error Individual );
Save Std Error of Individual
Syntax: obj << Save Std Error of Individual
Description: Saves a new formula column to the data table. The new column contains the formula of the standard error for an individual prediction. This is the standard error for predicting an individual response value for a given X value.
dt = Open( "$SAMPLE_DATA/Nonlinear Examples/US Population.jmp" );
obj = dt << Nonlinear( Y( :pop ), X( :"X-formula"n ), Finish );
obj << Save Std Error of Individual;
Save Std Error of Predicted
Syntax: obj << Save Std Error of Predicted
Description: Saves a new formula column to the data table. The new column contains the formula of the standard error for a model prediction. This is the standard error for predicting the average response value for a given X value.
dt = Open( "$SAMPLE_DATA/Nonlinear Examples/US Population.jmp" );
obj = dt << Nonlinear( Y( :pop ), X( :"X-formula"n ), Finish );
obj << Save Std Error of Predicted;
Second Deriv Method
Syntax: obj << Second Deriv Method( state=0|1 )
Description: Specifies that the fitting method use second derivatives.
dt = Open( "$SAMPLE_DATA/Nonlinear Examples/US Population.jmp" );
obj = dt << Nonlinear( Y( :pop ), X( :"X-formula"n ), Second Deriv Method( 1 ), Finish );
Set Parameter
Syntax: obj << Set Parameter( name=expr, ... )
Description: Sets one or more parameter values prior to fitting the model. This is useful for both fixing a parameter at a particular value and for setting starting values.
dt = Open( "$SAMPLE_DATA/Nonlinear Examples/CES Production Function.jmp" );
obj = dt << Nonlinear( Y( :"log($ value)"n ), X( :Model ) );
obj << Set Parameter( B0 = 0.2 );
Wait( 2 );
obj << Finish;
Show Derivatives
Syntax: obj << Show Derivatives
Description: Shows the derivatives of the nonlinear formula in the log.
dt = Open( "$SAMPLE_DATA/Nonlinear Examples/US Population.jmp" );
obj = dt << Nonlinear( Y( :pop ), X( :"X-formula"n ) );
obj << Show Derivatives;
Show Prediction Expression
Syntax: obj << Show Prediction Expression( state=0|1 )
Description: Shows or hides the prediction model or the loss function in the report.
dt = Open( "$SAMPLE_DATA/Nonlinear Examples/Logit Model w Loss1.jmp" );
obj = dt << Nonlinear(
Loss( :Loss ),
Show Prediction Expression( 1 ),
Expand Intermediate Formulas( 1 ),
Finish
);
Step
Syntax: obj << Step
Description: Takes one iteration step toward solving the nonlinear model.
dt = Open( "$SAMPLE_DATA/Nonlinear Examples/CES Production Function.jmp" );
obj = dt << Nonlinear( Y( :"log($ value)"n ), X( :Model ) );
obj << Step;
Wait( 1 );
obj << Step;
Stop
Syntax: obj << Stop
Description: Interrupts the nonlinear model fitting process and stops it at the current iteration.
dt = Open( "$SAMPLE_DATA/Nonlinear Examples/CES Production Function.jmp" );
obj = dt << Nonlinear( Y( :"log($ value)"n ), X( :Model ) );
obj << Go;
obj << Stop;
Surface Profiler
Syntax: obj << Surface Profiler( state=0|1 )
Description: Shows or hides a three-dimensional surface plot. This option is available only for models with two or more X variables.
dt = Open( "$SAMPLE_DATA/Nonlinear Examples/CES Production Function.jmp" );
obj = dt << Nonlinear( Y( :"log($ value)"n ), X( :Model ), Finish );
Wait( 0 );
obj << Surface Profiler( 1 );
Unlock Parameter
Syntax: obj << Unlock Parameter( Name, ... )
Description: Unlocks the specified parameters. Use this option on previously locked factors so that they are free to change during the iteration process.
dt = Open( "$SAMPLE_DATA/Nonlinear Examples/CES Production Function.jmp" );
obj = dt << Nonlinear( Y( :"log($ value)"n ), X( :Model ) );
obj << Set Parameter( B0 = 0.2 );
obj << Lock Parameter( B0, A, D );
obj << Finish;
Wait( 2 );
obj << Unlock Parameter( B0, A );
obj << Finish;
Unthreaded
Syntax: obj << Unthreaded( state=0|1 )
Description: Runs the iterations in the main computational thread.
dt = Open( "$SAMPLE_DATA/Nonlinear Examples/Algae Mitscherlich.jmp" );
obj = dt << Nonlinear( Y( :Algae density ), X( :Mitscherlich ) );
obj << Unthreaded( 1 );
obj << Finish;
Shared Item Messages
Action
Syntax: obj << Action
Description: All-purpose trapdoor within a platform to insert expressions to evaluate. Temporarily sets the DisplayBox and DataTable contexts to the Platform.
dt = Open( "$SAMPLE_DATA/Big Class.jmp" );
dt << Bivariate(
Y( :height ),
X( :weight ),
Action( Distribution( Y( :height, :weight ), Histograms Only ) )
);
Apply Preset
Syntax: Apply Preset( preset ); Apply Preset( source, label, <Folder( folder {, folder2, ...} )> )
Description: Apply a previously created preset to the object, updating the options and customizations to match the saved settings.
JMP Version Added: 18
Anonymous preset
dt = Open( "$SAMPLE_DATA/Big Class.jmp" );
obj = dt << Oneway( Y( :height ), X( :sex ), t Test( 1 ) );
preset = obj << New Preset();
dt2 = Open( "$SAMPLE_DATA/Dogs.jmp" );
obj2 = dt2 << Oneway( Y( :LogHist0 ), X( :drug ) );
Wait( 1 );
obj2 << Apply Preset( preset );
Search by name
dt = Open( "$SAMPLE_DATA/Big Class.jmp" );
obj = dt << Oneway( Y( :height ), X( :sex ) );
Wait( 1 );
obj << Apply Preset( "Sample Presets", "Compare Distributions" );
Search within folder(s)
dt = Open( "$SAMPLE_DATA/Big Class.jmp" );
obj = dt << Oneway( Y( :height ), X( :sex ) );
Wait( 1 );
obj << Apply Preset( "Sample Presets", "t-Tests", Folder( "Compare Means" ) );
Broadcast
Syntax: obj << Broadcast(message)
Description: Broadcasts a message to a platform. If return results from individual objects are tables, they are concatenated if possible, and the final format is identical to either the result from the Save Combined Table option in a Table Box or the result from the Concatenate option using a Source column. Other than those, results are stored in a list and returned.
JMP Version Added: 18
dt = Open( "$SAMPLE_DATA/Quality Control/Diameter.jmp" );
objs = Control Chart Builder(
Variables( Subgroup( :DAY ), Y( :DIAMETER ) ),
By( :OPERATOR )
);
objs[1] << Broadcast( Save Summaries );
Column Switcher
Syntax: obj << Column Switcher(column reference, {column reference, ...}, < Title(title) >, < Close Outline(0|1) >, < Retain Axis Settings(0|1) >, < Layout(0|1) >)
Description: Adds a control panel for changing the platform's variables
dt = Open( "$SAMPLE_DATA/Car Poll.jmp" );
obj = dt << Contingency( Y( :size ), X( :marital status ) );
ColumnSwitcherObject = obj << Column Switcher(
:marital status,
{:sex, :country, :marital status}
);
Copy ByGroup Script
Syntax: obj << Copy ByGroup Script
Description: Create a JSL script to produce this analysis, and put it on the clipboard.
dt = Open( "$SAMPLE_DATA/Nonlinear Examples/US Population.jmp" );
dt << New Column( "_bycol",
Character,
Nominal,
set values( Repeat( {"A", "B"}, N Rows( dt ) )[1 :: N Rows( dt )] )
);
obj = dt << Nonlinear( Y( :pop ), X( :"X-formula"n ), Finish(), By( _bycol ) );
obj[1] << Copy ByGroup Script;
Copy Script
Syntax: obj << Copy Script
Description: Create a JSL script to produce this analysis, and put it on the clipboard.
dt = Open( "$SAMPLE_DATA/Nonlinear Examples/US Population.jmp" );
obj = dt << Nonlinear( Y( :pop ), X( :"X-formula"n ), Finish() );
obj << Copy Script;
Data Table Window
Syntax: obj << Data Table Window
Description: Move the data table window for this analysis to the front.
dt = Open( "$SAMPLE_DATA/Nonlinear Examples/US Population.jmp" );
obj = dt << Nonlinear( Y( :pop ), X( :"X-formula"n ), Finish() );
obj << Data Table Window;
Get By Levels
Syntax: obj << Get By Levels
Description: Returns an associative array mapping the by group columns to their values.
JMP Version Added: 18
dt = Open( "$SAMPLE_DATA/Big Class.jmp" );
biv = dt << Bivariate( X( :height ), Y( :weight ), By( :sex ) );
biv << Get By Levels;
Get ByGroup Script
Syntax: obj << Get ByGroup Script
Description: Creates a script (JSL) to produce this analysis and returns it as an expression.
dt = Open( "$SAMPLE_DATA/Nonlinear Examples/US Population.jmp" );
dt << New Column( "_bycol",
Character,
Nominal,
set values( Repeat( {"A", "B"}, N Rows( dt ) )[1 :: N Rows( dt )] )
);
obj = dt << Nonlinear( Y( :pop ), X( :"X-formula"n ), Finish(), By( _bycol ) );
t = obj[1] << Get ByGroup Script;
Show( t );
Get Container
Syntax: obj << Get Container
Description: Returns a reference to the container box that holds the content for the object.
General
dt = Open( "$SAMPLE_DATA/Nonlinear Examples/US Population.jmp" );
obj = dt << Nonlinear( Y( :pop ), X( :"X-formula"n ), Finish() );
t = obj << Get Container;
Show( (t << XPath( "//OutlineBox" )) << Get Title );
Platform with Filter
dt = Open( "$SAMPLE_DATA/Big Class.jmp" );
gb = Graph Builder(
Show Control Panel( 0 ),
Variables( X( :height ), Y( :weight ) ),
Elements( Points( X, Y, Legend( 1 ) ), Smoother( X, Y, Legend( 2 ) ) ),
Local Data Filter(
Add Filter(
columns( :age, :sex, :height ),
Where( :age == {12, 13, 14} ),
Where( :sex == "F" ),
Where( :height >= 55 ),
Display( :age, N Items( 6 ) )
)
)
);
New Window( "platform boxes",
H List Box(
Outline Box( "Report(platform)", Report( gb ) << Get Picture ),
Outline Box( "platform << Get Container", (gb << Get Container) << Get Picture )
)
);
Get Data Table
Syntax: obj << Get Data Table
Description: Returns a reference to the data table.
dt = Open( "$SAMPLE_DATA/Nonlinear Examples/US Population.jmp" );
obj = dt << Nonlinear( Y( :pop ), X( :"X-formula"n ), Finish() );
t = obj << Get Datatable;
Show( N Rows( t ) );
Get Group Platform
Syntax: obj << Get Group Platform
Description: Return the Group Platform object if this platform is part of a Group. Otherwise, returns Empty().
dt = Open( "$SAMPLE_DATA/Big Class.jmp" );
biv = dt << Bivariate( Y( :weight ), X( :height ), By( :sex ) );
group = biv[1] << Get Group Platform;
Wait( 1 );
group << Layout( "Arrange in Tabs" );
Get Script
Syntax: obj << Get Script
Description: Creates a script (JSL) to produce this analysis and returns it as an expression.
dt = Open( "$SAMPLE_DATA/Nonlinear Examples/US Population.jmp" );
obj = dt << Nonlinear( Y( :pop ), X( :"X-formula"n ), Finish() );
t = obj << Get Script;
Show( t );
Get Script With Data Table
Syntax: obj << Get Script With Data Table
Description: Creates a script(JSL) to produce this analysis specifically referencing this data table and returns it as an expression.
dt = Open( "$SAMPLE_DATA/Nonlinear Examples/US Population.jmp" );
obj = dt << Nonlinear( Y( :pop ), X( :"X-formula"n ), Finish() );
t = obj << Get Script With Data Table;
Show( t );
Get Timing
Syntax: obj << Get Timing
Description: Times the platform launch.
dt = Open( "$SAMPLE_DATA/Nonlinear Examples/US Population.jmp" );
obj = dt << Nonlinear( Y( :pop ), X( :"X-formula"n ), Finish() );
t = obj << Get Timing;
Show( t );
Get Web Support
Syntax: obj << Get Web Support
Description: Return a number indicating the level of Interactive HTML support for the display object. 1 means some or all elements are supported. 0 means no support.
dt = Open( "$SAMPLE_DATA/Big Class.jmp" );
obj = dt << Bivariate( Y( :Weight ), X( :Height ) );
s = obj << Get Web Support();
Show( s );
Get Where Expr
Syntax: obj << Get Where Expr
Description: Returns the Where expression for the data subset, if the platform was launched with By() or Where(). Otherwise, returns Empty()
JMP Version Added: 18
dt = Open( "$SAMPLE_DATA/Big Class.jmp" );
biv = dt << Bivariate( X( :height ), Y( :weight ), By( :sex ) );
biv2 = dt << Bivariate( X( :height ), Y( :weight ), Where( :age < 14 & :height > 60 ) );
Show( biv[1] << Get Where Expr, biv2 << Get Where Expr );
Ignore Platform Preferences
Syntax: Ignore Platform Preferences( state=0|1 )
Description: Ignores the current settings of the platform's preferences. The message is ignored when sent to the platform after creation.
dt = Open( "$SAMPLE_DATA/Big Class.jmp" );
dt << Bivariate(
Ignore Platform Preferences( 1 ),
Y( :height ),
X( :weight ),
Action( Distribution( Y( :height, :weight ), Histograms Only ) )
);
Local Data Filter
Syntax: obj << Local Data Filter
Description: To filter data to specific groups or ranges, but local to this platform
dt = Open( "$SAMPLE_DATA/Car Poll.jmp" );
dt << Distribution(
Nominal Distribution( Column( :country ) ),
Local Data Filter(
Add Filter( columns( :sex ), Where( :sex == "Female" ) ),
Mode( Show( 1 ), Include( 1 ) )
)
);
New JSL Preset
Syntax: New JSL Preset( preset )
Description: For testing purposes, create a preset directly from a JSL expression. Like <<New Preset, it will return a Platform Preset that can be applied using <<Apply Preset. But it allows you to specify the full JSL expression for the preset to test outside of normal operation. You will get an Assert on apply if the platform names do not match, but that is expected.
JMP Version Added: 18
dt = Open( "$SAMPLE_DATA/Big Class.jmp" );
obj = dt << Oneway( Y( :Height ), X( :Age ) );
preset = obj << New JSL Preset( Oneway( Y( :A ), X( :B ), Each Pair( 1 ) ) );
Wait( 1 );
obj << Apply Preset( preset );
New Preset
Syntax: obj = New Preset()
Description: Create an anonymous preset representing the options and customizations applied to the object. This object can be passed to Apply Preset to copy the settings to another object of the same type.
JMP Version Added: 18
dt = Open( "$SAMPLE_DATA/Big Class.jmp" );
obj = dt << Oneway( Y( :height ), X( :sex ), t Test( 1 ) );
preset = obj << New Preset();
Paste Local Data Filter
Syntax: obj << Paste Local Data Filter
Description: Apply the local data filter from the clipboard to the current report.
dt = Open( "$SAMPLE_DATA/Cities.jmp" );
dist = Distribution( Continuous Distribution( Column( :POP ) ) );
filter = dist << Local Data Filter(
Add Filter( columns( :Region ), Where( :Region == "MW" ) )
);
filter << Copy Local Data Filter;
dist2 = Distribution( Continuous Distribution( Column( :Lead ) ) );
Wait( 1 );
dist2 << Paste Local Data Filter;
Redo Analysis
Syntax: obj << Redo Analysis
Description: Rerun this same analysis in a new window. The analysis will be different if the data has changed.
dt = Open( "$SAMPLE_DATA/Nonlinear Examples/US Population.jmp" );
obj = dt << Nonlinear( Y( :pop ), X( :"X-formula"n ), Finish() );
obj << Redo Analysis;
Redo ByGroup Analysis
Syntax: obj << Redo ByGroup Analysis
Description: Rerun this same analysis in a new window. The analysis will be different if the data has changed.
dt = Open( "$SAMPLE_DATA/Nonlinear Examples/US Population.jmp" );
dt << New Column( "_bycol",
Character,
Nominal,
set values( Repeat( {"A", "B"}, N Rows( dt ) )[1 :: N Rows( dt )] )
);
obj = dt << Nonlinear( Y( :pop ), X( :"X-formula"n ), Finish(), By( _bycol ) );
obj[1] << Redo ByGroup Analysis;
Relaunch Analysis
Syntax: obj << Relaunch Analysis
Description: Opens the platform launch window and recalls the settings that were used to create the report.
dt = Open( "$SAMPLE_DATA/Nonlinear Examples/US Population.jmp" );
obj = dt << Nonlinear( Y( :pop ), X( :"X-formula"n ), Finish() );
obj << Relaunch Analysis;
Relaunch ByGroup
Syntax: obj << Relaunch ByGroup
Description: Opens the platform launch window and recalls the settings that were used to create the report.
dt = Open( "$SAMPLE_DATA/Nonlinear Examples/US Population.jmp" );
dt << New Column( "_bycol",
Character,
Nominal,
set values( Repeat( {"A", "B"}, N Rows( dt ) )[1 :: N Rows( dt )] )
);
obj = dt << Nonlinear( Y( :pop ), X( :"X-formula"n ), Finish(), By( _bycol ) );
obj[1] << Relaunch ByGroup;
Remove Column Switcher
Syntax: obj << Remove Column Switcher
Description: Removes the most recent Column Switcher that has been added to the platform.
dt = Open( "$SAMPLE_DATA/Car Poll.jmp" );
obj = dt << Contingency( Y( :size ), X( :marital status ) );
ColumnSwitcherObject = obj << Column Switcher(
:marital status,
{:sex, :country, :marital status}
);
Wait( 2 );
obj << Remove Column Switcher;
Remove Local Data Filter
Syntax: obj << Remove Local Data Filter
Description: If a local data filter has been created, this removes it and restores the platform to use all the data in the data table directly
dt = Open( "$SAMPLE_DATA/Car Poll.jmp" );
dist = dt << Distribution(
Nominal Distribution( Column( :country ) ),
Local Data Filter(
Add Filter( columns( :sex ), Where( :sex == "Female" ) ),
Mode( Show( 1 ), Include( 1 ) )
)
);
Wait( 2 );
dist << remove local data filter;
Render Preset
Syntax: Render Preset( preset )
Description: For testing purposes, show the platform rerun script that would be used when applying a platform preset to the platform in the log. No changes are made to the platform.
JMP Version Added: 18
dt = Open( "$SAMPLE_DATA/Big Class.jmp" );
obj = dt << Oneway( Y( :Height ), X( :Age ) );
obj << Render Preset( Expr( Oneway( Y( :A ), X( :B ), Each Pair( 1 ) ) ) );
Report
Syntax: obj << Report;Report( obj )
Description: Returns a reference to the report object.
dt = Open( "$SAMPLE_DATA/Nonlinear Examples/US Population.jmp" );
obj = dt << Nonlinear( Y( :pop ), X( :"X-formula"n ), Finish() );
r = obj << Report;
t = r[Outline Box( 1 )] << Get Title;
Show( t );
Report View
Syntax: obj << Report View( "Full"|"Summary" )
Description: The report view determines the level of detail visible in a platform report. Full shows all of the detail, while Summary shows only select content, dependent on the platform. For customized behavior, display boxes support a <<Set Summary Behavior message.
dt = Open( "$SAMPLE_DATA/Nonlinear Examples/US Population.jmp" );
obj = dt << Nonlinear( Y( :pop ), X( :"X-formula"n ), Finish() );
obj << Report View( "Summary" );
Save ByGroup Script to Data Table
Syntax: Save ByGroup Script to Data Table( <name>, < <<Append Suffix(0|1)>, < <<Prompt(0|1)>, < <<Replace(0|1)> );
Description: Creates a JSL script to produce this analysis, and save it as a table property in the data table. You can specify a name for the script. The Append Suffix option appends a numeric suffix to the script name, which differentiates the script from an existing script with the same name. The Prompt option prompts the user to specify a script name. The Replace option replaces an existing script with the same name.
dt = Open( "$SAMPLE_DATA/Nonlinear Examples/US Population.jmp" );
dt << New Column( "_bycol",
Character,
Nominal,
set values( Repeat( {"A", "B"}, N Rows( dt ) )[1 :: N Rows( dt )] )
);
obj = dt << Nonlinear( Y( :pop ), X( :"X-formula"n ), Finish(), By( _bycol ) );
obj[1] << Save ByGroup Script to Data Table;
Save ByGroup Script to Journal
Syntax: obj << Save ByGroup Script to Journal
Description: Create a JSL script to produce this analysis, and add a Button to the journal containing this script.
dt = Open( "$SAMPLE_DATA/Nonlinear Examples/US Population.jmp" );
dt << New Column( "_bycol",
Character,
Nominal,
set values( Repeat( {"A", "B"}, N Rows( dt ) )[1 :: N Rows( dt )] )
);
obj = dt << Nonlinear( Y( :pop ), X( :"X-formula"n ), Finish(), By( _bycol ) );
obj[1] << Save ByGroup Script to Journal;
Save ByGroup Script to Script Window
Syntax: obj << Save ByGroup Script to Script Window
Description: Create a JSL script to produce this analysis, and append it to the current Script text window.
dt = Open( "$SAMPLE_DATA/Nonlinear Examples/US Population.jmp" );
dt << New Column( "_bycol",
Character,
Nominal,
set values( Repeat( {"A", "B"}, N Rows( dt ) )[1 :: N Rows( dt )] )
);
obj = dt << Nonlinear( Y( :pop ), X( :"X-formula"n ), Finish(), By( _bycol ) );
obj[1] << Save ByGroup Script to Script Window;
Save Script for All Objects
Syntax: obj << Save Script for All Objects
Description: Creates a script for all report objects in the window and appends it to the current Script window. This option is useful when you have multiple reports in the window.
dt = Open( "$SAMPLE_DATA/Nonlinear Examples/US Population.jmp" );
obj = dt << Nonlinear( Y( :pop ), X( :"X-formula"n ), Finish() );
obj << Save Script for All Objects;
Save Script for All Objects To Data Table
Syntax: obj << Save Script for All Objects To Data Table( <name> )
Description: Saves a script for all report objects to the current data table. This option is useful when you have multiple reports in the window. The script is named after the first platform unless you specify the script name in quotes.
Example 1
dt = Open( "$SAMPLE_DATA/Nonlinear Examples/US Population.jmp" );
dt << New Column( "_bycol",
Character,
Nominal,
set values( Repeat( {"A", "B"}, N Rows( dt ) )[1 :: N Rows( dt )] )
);
obj = dt << Nonlinear( Y( :pop ), X( :"X-formula"n ), Finish(), By( _bycol ) );
obj[1] << Save Script for All Objects To Data Table;
Example 2
dt = Open( "$SAMPLE_DATA/Nonlinear Examples/US Population.jmp" );
dt << New Column( "_bycol",
Character,
Nominal,
set values( Repeat( {"A", "B"}, N Rows( dt ) )[1 :: N Rows( dt )] )
);
obj = dt << Nonlinear( Y( :pop ), X( :"X-formula"n ), Finish(), By( _bycol ) );
obj[1] << Save Script for All Objects To Data Table( "My Script" );
Save Script to Data Table
Syntax: Save Script to Data Table( <name>, < <<Prompt(0|1)>, < <<Replace(0|1)> );
Description: Create a JSL script to produce this analysis, and save it as a table property in the data table.
dt = Open( "$SAMPLE_DATA/Nonlinear Examples/US Population.jmp" );
obj = dt << Nonlinear( Y( :pop ), X( :"X-formula"n ), Finish() );
obj << Save Script to Data Table( "My Analysis", <<Prompt( 0 ), <<Replace( 0 ) );
Save Script to Journal
Syntax: obj << Save Script to Journal
Description: Create a JSL script to produce this analysis, and add a Button to the journal containing this script.
dt = Open( "$SAMPLE_DATA/Nonlinear Examples/US Population.jmp" );
obj = dt << Nonlinear( Y( :pop ), X( :"X-formula"n ), Finish() );
obj << Save Script to Journal;
Save Script to Report
Syntax: obj << Save Script to Report
Description: Create a JSL script to produce this analysis, and show it in the report itself. Useful to preserve a printed record of what was done.
dt = Open( "$SAMPLE_DATA/Nonlinear Examples/US Population.jmp" );
obj = dt << Nonlinear( Y( :pop ), X( :"X-formula"n ), Finish() );
obj << Save Script to Report;
Save Script to Script Window
Syntax: obj << Save Script to Script Window
Description: Create a JSL script to produce this analysis, and append it to the current Script text window.
dt = Open( "$SAMPLE_DATA/Nonlinear Examples/US Population.jmp" );
obj = dt << Nonlinear( Y( :pop ), X( :"X-formula"n ), Finish() );
obj << Save Script to Script Window;
SendToByGroup
Syntax: SendToByGroup( {":Column == level"}, command );
Description: Sends platform commands or display customization commands to each level of a by-group.
dt = Open( "$SAMPLE_DATA/Big Class.jmp" );
dt << Distribution(
By( :Sex ),
SendToByGroup(
{:sex == "F"},
Continuous Distribution( Column( :weight ), Normal Quantile Plot( 1 ) )
),
SendToByGroup( {:sex == "M"}, Continuous Distribution( Column( :weight ) ) )
);
SendToEmbeddedScriptable
Syntax: SendToEmbeddedScriptable( Dispatch( "Outline name", "Element name", command );
Description: SendToEmbeddedScriptable restores settings of embedded scriptable objects.
dt = Open( "$SAMPLE_DATA/Reliability/Fan.jmp" );
dt << Life Distribution(
Y( :Time ),
Censor( :Censor ),
Censor Code( 1 ),
<<Fit Weibull,
SendToEmbeddedScriptable(
Dispatch(
{"Statistics", "Parametric Estimate - Weibull", "Profilers", "Density Profiler"},
{1, Confidence Intervals( 0 ), Term Value( Time( 6000, Lock( 0 ), Show( 1 ) ) )}
)
)
);
SendToReport
Syntax: SendToReport( Dispatch( "Outline name", "Element name", Element type, command );
Description: Send To Report is used in tandem with the Dispatch command to customize the appearance of a report.
dt = Open( "$SAMPLE_DATA/Big Class.jmp" );
dt << Distribution(
Nominal Distribution( Column( :age ) ),
Continuous Distribution( Column( :weight ) ),
SendToReport( Dispatch( "age", "Distrib Nom Hist", FrameBox, {Frame Size( 178, 318 )} ) )
);
Sync to Data Table Changes
Syntax: obj << Sync to Data Table Changes
Description: Sync with the exclude and data changes that have been made.
dt = Open( "$SAMPLE_DATA/Cities.jmp" );
dist = Distribution( Continuous Distribution( Column( :POP ) ) );
Wait( 1 );
dt << Delete Rows( dt << Get Rows Where( :Region == "W" ) );
dist << Sync To Data Table Changes;
Title
Syntax: obj << Title( "new title" )
Description: Sets the title of the platform.
dt = Open( "$SAMPLE_DATA/Nonlinear Examples/US Population.jmp" );
obj = dt << Nonlinear( Y( :pop ), X( :"X-formula"n ), Finish() );
obj << Title( "My Platform" );
Top Report
Syntax: obj << Top Report
Description: Returns a reference to the root node in the report.
dt = Open( "$SAMPLE_DATA/Nonlinear Examples/US Population.jmp" );
obj = dt << Nonlinear( Y( :pop ), X( :"X-formula"n ), Finish() );
r = obj << Top Report;
t = r[Outline Box( 1 )] << Get Title;
Show( t );
Transform Column
Syntax: obj = <Platform>(... Transform Column(<name>, Formula(<expression>), [Random Seed(<n>)], [Numeric|Character|Expression], [Continuous|Nominal|Ordinal|Unstructured Text], [column properties]) ...)
Description: Create a transform column in the local context of an object, usually a platform. The transform column is active only for the lifetime of the platform.
JMP Version Added: 16
dt = Open( "$SAMPLE_DATA/Big Class.jmp" );
dt << Distribution(
Transform Column( "age^2", Format( "Fixed Dec", 5, 0 ), Formula( :age * :age ) ),
Continuous Distribution( Column( :"age^2"n ) )
);
View Web XML
Syntax: obj << View Web XML
Description: Returns the XML code that is used to create the interactive HTML report.
dt = Open( "$SAMPLE_DATA/Big Class.jmp" );
obj = dt << Bivariate( Y( :Weight ), X( :Height ) );
xml = obj << View Web XML;
Window View
Syntax: obj = Nonlinear(...Window View( "Visible"|"Invisible"|"Private" )...)
Description: Set the type of the window to be created for the report. By default a Visible report window will be created. An Invisible window will not appear on screen, but is discoverable by functions such as Window(). A Private window responds to most window messages but is not discoverable and must be addressed through the report object
dt = Open( "$SAMPLE_DATA/Big Class.jmp" );
biv = dt << Bivariate( Window View( "Private" ), Y( :weight ), X( :height ), Fit Line );
eqn = Report( biv )["Linear Fit", Text Edit Box( 1 )] << Get Text;
biv << Close Window;
New Window( "Bivariate Equation",
Outline Box( "Big Class Linear Fit", Text Box( eqn, <<Set Base Font( "Title" ) ) )
);