Partial Least Squares
Associated Constructors
Partial Least Squares
Syntax: Partial Least Squares( Y( columns ), X( columns ) )
Description: Fits a model to one or more response variables using latent factors. This permits models to be fit when explanatory variables are highly correlated, or when there are more explanatory variables than there are observations.
Example 1
dt = Open( "$SAMPLE_DATA/Wine Tasting.jmp" );
obj = dt << Partial Least Squares(
Y( :Hedonic, :Goes with meat, :Goes with dessert ),
X( :Price, :Sugar, :Alcohol, :Acidity ),
Go
);
Example 2
dt = Open( "$SAMPLE_DATA/Baltic.jmp" );
obj = dt << Partial Least Squares(
Y( :ls, :ha, :dt ),
X(
:v1, :v2, :v3, :v4, :v5, :v6, :v7, :v8, :v9, :v10, :v11, :v12, :v13, :v14, :v15, :v16,
:v17, :v18, :v19, :v20, :v21, :v22, :v23, :v24, :v25, :v26, :v27
),
Go
);
Columns
By
Syntax: obj << By( column(s) )
dt = Open( "$SAMPLE_DATA/Wine Tasting.jmp" );
dt << New Column( "_bycol",
Character,
Nominal,
set values( Repeat( {"A", "B"}, N Rows( dt ) )[1 :: N Rows( dt )] )
);
obj = dt << Partial Least Squares(
Y( :Hedonic, :Goes with meat, :Goes with dessert ),
X( :Price, :Sugar, :Alcohol, :Acidity ),
By( _bycol ),
Go
);
Factor
Syntax: obj << Factor( column(s) )
dt = Open( "$SAMPLE_DATA/Wine Tasting.jmp" );
obj = dt << Partial Least Squares(
Y( :Hedonic, :Goes with meat, :Goes with dessert ),
X( :Price, :Sugar, :Alcohol, :Acidity ),
Go
);
Freq
Syntax: obj << Freq( column )
dt = Open( "$SAMPLE_DATA/Wine Tasting.jmp" );
dt << New Column( "_freqcol", Numeric, Continuous, Formula( Random Integer( 1, 5 ) ) );
obj = dt << Partial Least Squares(
Y( :Hedonic, :Goes with meat, :Goes with dessert ),
X( :Price, :Sugar, :Alcohol, :Acidity ),
Freq( _freqcol ),
Go
);
Response
Syntax: obj << Response( column(s) )
dt = Open( "$SAMPLE_DATA/Wine Tasting.jmp" );
obj = dt << Partial Least Squares(
Y( :Hedonic, :Goes with meat, :Goes with dessert ),
X( :Price, :Sugar, :Alcohol, :Acidity ),
Go
);
Validation
Syntax: obj << Validation( column )
dt = Open( "$SAMPLE_DATA/Wine Tasting.jmp" );
obj = dt << Partial Least Squares(
Y( :Hedonic, :Goes with meat, :Goes with dessert ),
X( :Price, :Sugar, :Alcohol, :Acidity ),
Go
);
X
Syntax: obj << X( column(s) )
dt = Open( "$SAMPLE_DATA/Wine Tasting.jmp" );
obj = dt << Partial Least Squares(
Y( :Hedonic, :Goes with meat, :Goes with dessert ),
X( :Price, :Sugar, :Alcohol, :Acidity ),
Go
);
Y
Syntax: obj << Y( column(s) )
dt = Open( "$SAMPLE_DATA/Wine Tasting.jmp" );
obj = dt << Partial Least Squares(
Y( :Hedonic, :Goes with meat, :Goes with dessert ),
X( :Price, :Sugar, :Alcohol, :Acidity ),
Go
);
Item Messages
Centering
Syntax: obj = Partial Least Squares(...Centering( state=0|1)...)
Description: Centers all Y variables and model effects by subtracting the mean from each column. On by default.
dt = Open( "$SAMPLE_DATA/Baltic.jmp" );
obj = dt << Partial Least Squares(
Y( :ls, :ha, :dt ),
X(
:v1, :v2, :v3, :v4, :v5, :v6, :v7, :v8, :v9, :v10, :v11, :v12, :v13, :v14, :v15, :v16,
:v17, :v18, :v19, :v20, :v21, :v22, :v23, :v24, :v25, :v26, :v27
),
Centering( 0 ),
Validation Method( KFold( 7 ) ),
Go
);
Fit
Syntax: obj << Fit( SVD( Fast|Classical ), Method( NIPALS|SIMPLS ), Number of Factors( number ) )
Description: Fits a partial least squares model with a specified method and number of factors.
dt = Open( "$SAMPLE_DATA/Baltic.jmp" );
obj = dt << Partial Least Squares(
Y( :ls, :ha, :dt ),
X(
:v1, :v2, :v3, :v4, :v5, :v6, :v7, :v8, :v9, :v10, :v11, :v12, :v13, :v14, :v15, :v16,
:v17, :v18, :v19, :v20, :v21, :v22, :v23, :v24, :v25, :v26, :v27
),
Fit( Method( NIPALS ), Number of Factors( 7 ) ),
Go
);
Go
Syntax: obj << Go
Description: Launches the partial least squares model fit.
dt = Open( "$SAMPLE_DATA/Baltic.jmp" );
obj = dt << Partial Least Squares(
Y( :ls, :ha, :dt ),
X(
:v1, :v2, :v3, :v4, :v5, :v6, :v7, :v8, :v9, :v10, :v11, :v12, :v13, :v14, :v15, :v16,
:v17, :v18, :v19, :v20, :v21, :v22, :v23, :v24, :v25, :v26, :v27
)
);
obj << Go;
Imputation Method
Syntax: obj = Partial Least Squares(...Imputation Method( "Mean"|"EM" )...)
Description: Specifies the imputation method. The Mean method replaces missing values with the mean of the nonmissing values in the same column. The EM method uses an iterative Expectation-Maximization (EM) approach to impute missing values.
dt = Open( "$SAMPLE_DATA/Cities.jmp" );
obj = dt << Partial Least Squares(
Y( :Y ),
X( :OZONE, :CO, :SO2, :NO, :PM10, :Lead ),
Impute Missing Data( 1 ),
Imputation Method( "EM" ),
Max Iterations( 2 ),
Validation Method( None, Initial Number of Factors( 6 ) ),
Fit( Method( NIPALS ), Number of Factors( 6 ) )
);
Impute Missing Data
Syntax: obj = Partial Least Squares(...Impute Missing Data( state=0|1 )...)
Description: Replaces missing data values in the responses and regressors with nonmissing values. Otherwise, rows with missing values are excluded from the analysis.
dt = Open( "$SAMPLE_DATA/Cities.jmp" );
obj = Partial Least Squares(
Y( :Y ),
X( :OZONE, :CO, :SO2, :NO, :PM10, :Lead ),
Impute Missing Data( 1 ),
Validation Method( None, Initial Number of Factors( 6 ) ),
Go
);
Initial Number of Factors
Syntax: obj << Partial Least Squares( Validation Method(...Initial Number of Factors( number )...) )
Description: Specifies the initial number of factors for cross validation.
dt = Open( "$SAMPLE_DATA/Baltic.jmp" );
obj = dt << Partial Least Squares(
Y( :ls, :ha, :dt ),
X(
:v1, :v2, :v3, :v4, :v5, :v6, :v7, :v8, :v9, :v10, :v11, :v12, :v13, :v14, :v15, :v16,
:v17, :v18, :v19, :v20, :v21, :v22, :v23, :v24, :v25, :v26, :v27
),
Validation Method( KFold( 7 ), Initial Number of Factors( 10 ) ),
);
obj << Go;
Max Iterations
Syntax: obj = Partial Least Squares(...Max Iterations( number=1 )...)
Description: Specifies the maximum number of iterations to perform in the EM imputation loop. "1" by default.
dt = Open( "$SAMPLE_DATA/Cities.jmp" );
obj = dt << Partial Least Squares(
Y( :Y ),
X( :OZONE, :CO, :SO2, :NO, :PM10, :Lead ),
Impute Missing Data( 1 ),
Imputation Method( "EM" ),
Max Iterations( 2 ),
Validation Method( None, Initial Number of Factors( 6 ) ),
Fit( Method( NIPALS ), Number of Factors( 6 ) )
);
Method
Syntax: obj = Partial Least Squares(...Fit( Method( NIPALS|SIMPLS)... )
Description: Specifies the method used to fit the partial least squares model.
dt = Open( "$SAMPLE_DATA/Baltic.jmp" );
obj = dt << Partial Least Squares(
Y( :ls, :ha, :dt ),
X(
:v1, :v2, :v3, :v4, :v5, :v6, :v7, :v8, :v9, :v10, :v11, :v12, :v13, :v14, :v15, :v16,
:v17, :v18, :v19, :v20, :v21, :v22, :v23, :v24, :v25, :v26, :v27
),
Fit( Method( NIPALS ), Number of Factors( 11 ) ),
Go
);
Model Dialog
Syntax: obj << Model Dialog
Description: Opens the Fit Model launch window. You can fit a Partial Least Squares model from this launch window by selecting the Partial Least Squares personality.
dt = Open( "$SAMPLE_DATA/Wine Tasting.jmp" );
obj = dt << Partial Least Squares(
Y( :Hedonic, :Goes with meat, :Goes with dessert ),
X( :Price, :Sugar, :Alcohol, :Acidity ),
Go
);
obj << Model Dialog;
SVD
Syntax: obj << SVD( Fast|Classical )
Description: Sets the implementation of the SVD algorithm for computing the partial least squares model to Fast or Classical. The Fast option implements the Lanczos SVD routine and the Classical option implements the Golub-Kahan routine.
JMP Version Added: 16
dt = Open( "$SAMPLE_DATA/Baltic.jmp" );
obj = dt << Partial Least Squares(
Y( :ls, :ha, :dt ),
X(
:v1, :v2, :v3, :v4, :v5, :v6, :v7, :v8, :v9, :v10, :v11, :v12, :v13, :v14, :v15, :v16,
:v17, :v18, :v19, :v20, :v21, :v22, :v23, :v24, :v25, :v26, :v27
),
Validation Method( KFold( 7 ) ),
Go
);
obj << Fit( SVD( Classical ), Method( SIMPLS ) );
Scaling
Syntax: obj = Partial Least Squares(...Scaling( state=0|1)...)
Description: Scales all Y variables and model effects by dividing each column by its standard deviation. On by default.
dt = Open( "$SAMPLE_DATA/Baltic.jmp" );
obj = dt << Partial Least Squares(
Y( :ls, :ha, :dt ),
X(
:v1, :v2, :v3, :v4, :v5, :v6, :v7, :v8, :v9, :v10, :v11, :v12, :v13, :v14, :v15, :v16,
:v17, :v18, :v19, :v20, :v21, :v22, :v23, :v24, :v25, :v26, :v27
),
Scaling( 0 ),
Validation Method( KFold( 7 ) ),
Go
);
Set Random Seed
Syntax: obj << Set Random Seed( number )
Description: Specifies the random seed for running a partial least squares model with cross validation.
dt = Open( "$SAMPLE_DATA/Baltic.jmp" );
obj = dt << Partial Least Squares(
Y( :ls, :ha, :dt ),
X(
:v1, :v2, :v3, :v4, :v5, :v6, :v7, :v8, :v9, :v10, :v11, :v12, :v13, :v14, :v15, :v16,
:v17, :v18, :v19, :v20, :v21, :v22, :v23, :v24, :v25, :v26, :v27
),
Set Random Seed( 12345 ),
Validation Method( KFold( 7 ) ),
Go
);
Validation Method
Syntax: obj << Validation Method( KFold( number )|Holdback( fraction )|"Leave-One-Out"|None, Initial Number of Factors( number ) )
Description: Sets the method used for model validation.
dt = Open( "$SAMPLE_DATA/Baltic.jmp" );
obj = dt << Partial Least Squares(
Y( :ls, :ha, :dt ),
X(
:v1, :v2, :v3, :v4, :v5, :v6, :v7, :v8, :v9, :v10, :v11, :v12, :v13, :v14, :v15, :v16,
:v17, :v18, :v19, :v20, :v21, :v22, :v23, :v24, :v25, :v26, :v27
),
Validation Method( KFold( 7 ), Initial Number of Factors( 15 ) ),
Go
);
Shared Item Messages
Action
Syntax: obj << Action
Description: All-purpose trapdoor within a platform to insert expressions to evaluate. Temporarily sets the DisplayBox and DataTable contexts to the Platform.
dt = Open( "$SAMPLE_DATA/Big Class.jmp" );
dt << Bivariate(
Y( :height ),
X( :weight ),
Action( Distribution( Y( :height, :weight ), Histograms Only ) )
);
Apply Preset
Syntax: Apply Preset( preset ); Apply Preset( source, label, <Folder( folder {, folder2, ...} )> )
Description: Apply a previously created preset to the object, updating the options and customizations to match the saved settings.
JMP Version Added: 18
Anonymous preset
dt = Open( "$SAMPLE_DATA/Big Class.jmp" );
obj = dt << Oneway( Y( :height ), X( :sex ), t Test( 1 ) );
preset = obj << New Preset();
dt2 = Open( "$SAMPLE_DATA/Dogs.jmp" );
obj2 = dt2 << Oneway( Y( :LogHist0 ), X( :drug ) );
Wait( 1 );
obj2 << Apply Preset( preset );
Search by name
dt = Open( "$SAMPLE_DATA/Big Class.jmp" );
obj = dt << Oneway( Y( :height ), X( :sex ) );
Wait( 1 );
obj << Apply Preset( "Sample Presets", "Compare Distributions" );
Search within folder(s)
dt = Open( "$SAMPLE_DATA/Big Class.jmp" );
obj = dt << Oneway( Y( :height ), X( :sex ) );
Wait( 1 );
obj << Apply Preset( "Sample Presets", "t-Tests", Folder( "Compare Means" ) );
Broadcast
Syntax: obj << Broadcast(message)
Description: Broadcasts a message to a platform. If return results from individual objects are tables, they are concatenated if possible, and the final format is identical to either the result from the Save Combined Table option in a Table Box or the result from the Concatenate option using a Source column. Other than those, results are stored in a list and returned.
JMP Version Added: 18
dt = Open( "$SAMPLE_DATA/Quality Control/Diameter.jmp" );
objs = Control Chart Builder(
Variables( Subgroup( :DAY ), Y( :DIAMETER ) ),
By( :OPERATOR )
);
objs[1] << Broadcast( Save Summaries );
Column Switcher
Syntax: obj << Column Switcher(column reference, {column reference, ...}, < Title(title) >, < Close Outline(0|1) >, < Retain Axis Settings(0|1) >, < Layout(0|1) >)
Description: Adds a control panel for changing the platform's variables
dt = Open( "$SAMPLE_DATA/Car Poll.jmp" );
obj = dt << Contingency( Y( :size ), X( :marital status ) );
ColumnSwitcherObject = obj << Column Switcher(
:marital status,
{:sex, :country, :marital status}
);
Copy ByGroup Script
Syntax: obj << Copy ByGroup Script
Description: Create a JSL script to produce this analysis, and put it on the clipboard.
dt = Open( "$SAMPLE_DATA/Wine Tasting.jmp" );
dt << New Column( "_bycol",
Character,
Nominal,
set values( Repeat( {"A", "B"}, N Rows( dt ) )[1 :: N Rows( dt )] )
);
obj = dt << Partial Least Squares(
Y( :Hedonic, :Goes with meat, :Goes with dessert ),
X( :Price, :Sugar, :Alcohol, :Acidity ),
By( _bycol ),
Go
);
obj[1] << Copy ByGroup Script;
Copy Script
Syntax: obj << Copy Script
Description: Create a JSL script to produce this analysis, and put it on the clipboard.
dt = Open( "$SAMPLE_DATA/Wine Tasting.jmp" );
obj = dt << Partial Least Squares(
Y( :Hedonic, :Goes with meat, :Goes with dessert ),
X( :Price, :Sugar, :Alcohol, :Acidity ),
Go
);
obj << Copy Script;
Data Table Window
Syntax: obj << Data Table Window
Description: Move the data table window for this analysis to the front.
dt = Open( "$SAMPLE_DATA/Wine Tasting.jmp" );
obj = dt << Partial Least Squares(
Y( :Hedonic, :Goes with meat, :Goes with dessert ),
X( :Price, :Sugar, :Alcohol, :Acidity ),
Go
);
obj << Data Table Window;
Get By Levels
Syntax: obj << Get By Levels
Description: Returns an associative array mapping the by group columns to their values.
JMP Version Added: 18
dt = Open( "$SAMPLE_DATA/Big Class.jmp" );
biv = dt << Bivariate( X( :height ), Y( :weight ), By( :sex ) );
biv << Get By Levels;
Get ByGroup Script
Syntax: obj << Get ByGroup Script
Description: Creates a script (JSL) to produce this analysis and returns it as an expression.
dt = Open( "$SAMPLE_DATA/Wine Tasting.jmp" );
dt << New Column( "_bycol",
Character,
Nominal,
set values( Repeat( {"A", "B"}, N Rows( dt ) )[1 :: N Rows( dt )] )
);
obj = dt << Partial Least Squares(
Y( :Hedonic, :Goes with meat, :Goes with dessert ),
X( :Price, :Sugar, :Alcohol, :Acidity ),
By( _bycol ),
Go
);
t = obj[1] << Get ByGroup Script;
Show( t );
Get Container
Syntax: obj << Get Container
Description: Returns a reference to the container box that holds the content for the object.
General
dt = Open( "$SAMPLE_DATA/Wine Tasting.jmp" );
obj = dt << Partial Least Squares(
Y( :Hedonic, :Goes with meat, :Goes with dessert ),
X( :Price, :Sugar, :Alcohol, :Acidity ),
Go
);
t = obj << Get Container;
Show( (t << XPath( "//OutlineBox" )) << Get Title );
Platform with Filter
dt = Open( "$SAMPLE_DATA/Big Class.jmp" );
gb = Graph Builder(
Show Control Panel( 0 ),
Variables( X( :height ), Y( :weight ) ),
Elements( Points( X, Y, Legend( 1 ) ), Smoother( X, Y, Legend( 2 ) ) ),
Local Data Filter(
Add Filter(
columns( :age, :sex, :height ),
Where( :age == {12, 13, 14} ),
Where( :sex == "F" ),
Where( :height >= 55 ),
Display( :age, N Items( 6 ) )
)
)
);
New Window( "platform boxes",
H List Box(
Outline Box( "Report(platform)", Report( gb ) << Get Picture ),
Outline Box( "platform << Get Container", (gb << Get Container) << Get Picture )
)
);
Get Data Table
Syntax: obj << Get Data Table
Description: Returns a reference to the data table.
dt = Open( "$SAMPLE_DATA/Wine Tasting.jmp" );
obj = dt << Partial Least Squares(
Y( :Hedonic, :Goes with meat, :Goes with dessert ),
X( :Price, :Sugar, :Alcohol, :Acidity ),
Go
);
t = obj << Get Datatable;
Show( N Rows( t ) );
Get Group Platform
Syntax: obj << Get Group Platform
Description: Return the Group Platform object if this platform is part of a Group. Otherwise, returns Empty().
dt = Open( "$SAMPLE_DATA/Big Class.jmp" );
biv = dt << Bivariate( Y( :weight ), X( :height ), By( :sex ) );
group = biv[1] << Get Group Platform;
Wait( 1 );
group << Layout( "Arrange in Tabs" );
Get Script
Syntax: obj << Get Script
Description: Creates a script (JSL) to produce this analysis and returns it as an expression.
dt = Open( "$SAMPLE_DATA/Wine Tasting.jmp" );
obj = dt << Partial Least Squares(
Y( :Hedonic, :Goes with meat, :Goes with dessert ),
X( :Price, :Sugar, :Alcohol, :Acidity ),
Go
);
t = obj << Get Script;
Show( t );
Get Script With Data Table
Syntax: obj << Get Script With Data Table
Description: Creates a script(JSL) to produce this analysis specifically referencing this data table and returns it as an expression.
dt = Open( "$SAMPLE_DATA/Wine Tasting.jmp" );
obj = dt << Partial Least Squares(
Y( :Hedonic, :Goes with meat, :Goes with dessert ),
X( :Price, :Sugar, :Alcohol, :Acidity ),
Go
);
t = obj << Get Script With Data Table;
Show( t );
Get Timing
Syntax: obj << Get Timing
Description: Times the platform launch.
dt = Open( "$SAMPLE_DATA/Wine Tasting.jmp" );
obj = dt << Partial Least Squares(
Y( :Hedonic, :Goes with meat, :Goes with dessert ),
X( :Price, :Sugar, :Alcohol, :Acidity ),
Go
);
t = obj << Get Timing;
Show( t );
Get Web Support
Syntax: obj << Get Web Support
Description: Return a number indicating the level of Interactive HTML support for the display object. 1 means some or all elements are supported. 0 means no support.
dt = Open( "$SAMPLE_DATA/Big Class.jmp" );
obj = dt << Bivariate( Y( :Weight ), X( :Height ) );
s = obj << Get Web Support();
Show( s );
Get Where Expr
Syntax: obj << Get Where Expr
Description: Returns the Where expression for the data subset, if the platform was launched with By() or Where(). Otherwise, returns Empty()
JMP Version Added: 18
dt = Open( "$SAMPLE_DATA/Big Class.jmp" );
biv = dt << Bivariate( X( :height ), Y( :weight ), By( :sex ) );
biv2 = dt << Bivariate( X( :height ), Y( :weight ), Where( :age < 14 & :height > 60 ) );
Show( biv[1] << Get Where Expr, biv2 << Get Where Expr );
Ignore Platform Preferences
Syntax: Ignore Platform Preferences( state=0|1 )
Description: Ignores the current settings of the platform's preferences. The message is ignored when sent to the platform after creation.
dt = Open( "$SAMPLE_DATA/Big Class.jmp" );
dt << Bivariate(
Ignore Platform Preferences( 1 ),
Y( :height ),
X( :weight ),
Action( Distribution( Y( :height, :weight ), Histograms Only ) )
);
Local Data Filter
Syntax: obj << Local Data Filter
Description: To filter data to specific groups or ranges, but local to this platform
dt = Open( "$SAMPLE_DATA/Car Poll.jmp" );
dt << Distribution(
Nominal Distribution( Column( :country ) ),
Local Data Filter(
Add Filter( columns( :sex ), Where( :sex == "Female" ) ),
Mode( Show( 1 ), Include( 1 ) )
)
);
New JSL Preset
Syntax: New JSL Preset( preset )
Description: For testing purposes, create a preset directly from a JSL expression. Like <<New Preset, it will return a Platform Preset that can be applied using <<Apply Preset. But it allows you to specify the full JSL expression for the preset to test outside of normal operation. You will get an Assert on apply if the platform names do not match, but that is expected.
JMP Version Added: 18
dt = Open( "$SAMPLE_DATA/Big Class.jmp" );
obj = dt << Oneway( Y( :Height ), X( :Age ) );
preset = obj << New JSL Preset( Oneway( Y( :A ), X( :B ), Each Pair( 1 ) ) );
Wait( 1 );
obj << Apply Preset( preset );
New Preset
Syntax: obj = New Preset()
Description: Create an anonymous preset representing the options and customizations applied to the object. This object can be passed to Apply Preset to copy the settings to another object of the same type.
JMP Version Added: 18
dt = Open( "$SAMPLE_DATA/Big Class.jmp" );
obj = dt << Oneway( Y( :height ), X( :sex ), t Test( 1 ) );
preset = obj << New Preset();
Paste Local Data Filter
Syntax: obj << Paste Local Data Filter
Description: Apply the local data filter from the clipboard to the current report.
dt = Open( "$SAMPLE_DATA/Cities.jmp" );
dist = Distribution( Continuous Distribution( Column( :POP ) ) );
filter = dist << Local Data Filter(
Add Filter( columns( :Region ), Where( :Region == "MW" ) )
);
filter << Copy Local Data Filter;
dist2 = Distribution( Continuous Distribution( Column( :Lead ) ) );
Wait( 1 );
dist2 << Paste Local Data Filter;
Redo Analysis
Syntax: obj << Redo Analysis
Description: Rerun this same analysis in a new window. The analysis will be different if the data has changed.
dt = Open( "$SAMPLE_DATA/Wine Tasting.jmp" );
obj = dt << Partial Least Squares(
Y( :Hedonic, :Goes with meat, :Goes with dessert ),
X( :Price, :Sugar, :Alcohol, :Acidity ),
Go
);
obj << Redo Analysis;
Redo ByGroup Analysis
Syntax: obj << Redo ByGroup Analysis
Description: Rerun this same analysis in a new window. The analysis will be different if the data has changed.
dt = Open( "$SAMPLE_DATA/Wine Tasting.jmp" );
dt << New Column( "_bycol",
Character,
Nominal,
set values( Repeat( {"A", "B"}, N Rows( dt ) )[1 :: N Rows( dt )] )
);
obj = dt << Partial Least Squares(
Y( :Hedonic, :Goes with meat, :Goes with dessert ),
X( :Price, :Sugar, :Alcohol, :Acidity ),
By( _bycol ),
Go
);
obj[1] << Redo ByGroup Analysis;
Relaunch Analysis
Syntax: obj << Relaunch Analysis
Description: Opens the platform launch window and recalls the settings that were used to create the report.
dt = Open( "$SAMPLE_DATA/Wine Tasting.jmp" );
obj = dt << Partial Least Squares(
Y( :Hedonic, :Goes with meat, :Goes with dessert ),
X( :Price, :Sugar, :Alcohol, :Acidity ),
Go
);
obj << Relaunch Analysis;
Relaunch ByGroup
Syntax: obj << Relaunch ByGroup
Description: Opens the platform launch window and recalls the settings that were used to create the report.
dt = Open( "$SAMPLE_DATA/Wine Tasting.jmp" );
dt << New Column( "_bycol",
Character,
Nominal,
set values( Repeat( {"A", "B"}, N Rows( dt ) )[1 :: N Rows( dt )] )
);
obj = dt << Partial Least Squares(
Y( :Hedonic, :Goes with meat, :Goes with dessert ),
X( :Price, :Sugar, :Alcohol, :Acidity ),
By( _bycol ),
Go
);
obj[1] << Relaunch ByGroup;
Remove Column Switcher
Syntax: obj << Remove Column Switcher
Description: Removes the most recent Column Switcher that has been added to the platform.
dt = Open( "$SAMPLE_DATA/Car Poll.jmp" );
obj = dt << Contingency( Y( :size ), X( :marital status ) );
ColumnSwitcherObject = obj << Column Switcher(
:marital status,
{:sex, :country, :marital status}
);
Wait( 2 );
obj << Remove Column Switcher;
Remove Local Data Filter
Syntax: obj << Remove Local Data Filter
Description: If a local data filter has been created, this removes it and restores the platform to use all the data in the data table directly
dt = Open( "$SAMPLE_DATA/Car Poll.jmp" );
dist = dt << Distribution(
Nominal Distribution( Column( :country ) ),
Local Data Filter(
Add Filter( columns( :sex ), Where( :sex == "Female" ) ),
Mode( Show( 1 ), Include( 1 ) )
)
);
Wait( 2 );
dist << remove local data filter;
Render Preset
Syntax: Render Preset( preset )
Description: For testing purposes, show the platform rerun script that would be used when applying a platform preset to the platform in the log. No changes are made to the platform.
JMP Version Added: 18
dt = Open( "$SAMPLE_DATA/Big Class.jmp" );
obj = dt << Oneway( Y( :Height ), X( :Age ) );
obj << Render Preset( Expr( Oneway( Y( :A ), X( :B ), Each Pair( 1 ) ) ) );
Report
Syntax: obj << Report;Report( obj )
Description: Returns a reference to the report object.
dt = Open( "$SAMPLE_DATA/Wine Tasting.jmp" );
obj = dt << Partial Least Squares(
Y( :Hedonic, :Goes with meat, :Goes with dessert ),
X( :Price, :Sugar, :Alcohol, :Acidity ),
Go
);
r = obj << Report;
t = r[Outline Box( 1 )] << Get Title;
Show( t );
Report View
Syntax: obj << Report View( "Full"|"Summary" )
Description: The report view determines the level of detail visible in a platform report. Full shows all of the detail, while Summary shows only select content, dependent on the platform. For customized behavior, display boxes support a <<Set Summary Behavior message.
dt = Open( "$SAMPLE_DATA/Wine Tasting.jmp" );
obj = dt << Partial Least Squares(
Y( :Hedonic, :Goes with meat, :Goes with dessert ),
X( :Price, :Sugar, :Alcohol, :Acidity ),
Go
);
obj << Report View( "Summary" );
Save ByGroup Script to Data Table
Syntax: Save ByGroup Script to Data Table( <name>, < <<Append Suffix(0|1)>, < <<Prompt(0|1)>, < <<Replace(0|1)> );
Description: Creates a JSL script to produce this analysis, and save it as a table property in the data table. You can specify a name for the script. The Append Suffix option appends a numeric suffix to the script name, which differentiates the script from an existing script with the same name. The Prompt option prompts the user to specify a script name. The Replace option replaces an existing script with the same name.
dt = Open( "$SAMPLE_DATA/Wine Tasting.jmp" );
dt << New Column( "_bycol",
Character,
Nominal,
set values( Repeat( {"A", "B"}, N Rows( dt ) )[1 :: N Rows( dt )] )
);
obj = dt << Partial Least Squares(
Y( :Hedonic, :Goes with meat, :Goes with dessert ),
X( :Price, :Sugar, :Alcohol, :Acidity ),
By( _bycol ),
Go
);
obj[1] << Save ByGroup Script to Data Table;
Save ByGroup Script to Journal
Syntax: obj << Save ByGroup Script to Journal
Description: Create a JSL script to produce this analysis, and add a Button to the journal containing this script.
dt = Open( "$SAMPLE_DATA/Wine Tasting.jmp" );
dt << New Column( "_bycol",
Character,
Nominal,
set values( Repeat( {"A", "B"}, N Rows( dt ) )[1 :: N Rows( dt )] )
);
obj = dt << Partial Least Squares(
Y( :Hedonic, :Goes with meat, :Goes with dessert ),
X( :Price, :Sugar, :Alcohol, :Acidity ),
By( _bycol ),
Go
);
obj[1] << Save ByGroup Script to Journal;
Save ByGroup Script to Script Window
Syntax: obj << Save ByGroup Script to Script Window
Description: Create a JSL script to produce this analysis, and append it to the current Script text window.
dt = Open( "$SAMPLE_DATA/Wine Tasting.jmp" );
dt << New Column( "_bycol",
Character,
Nominal,
set values( Repeat( {"A", "B"}, N Rows( dt ) )[1 :: N Rows( dt )] )
);
obj = dt << Partial Least Squares(
Y( :Hedonic, :Goes with meat, :Goes with dessert ),
X( :Price, :Sugar, :Alcohol, :Acidity ),
By( _bycol ),
Go
);
obj[1] << Save ByGroup Script to Script Window;
Save Script for All Objects
Syntax: obj << Save Script for All Objects
Description: Creates a script for all report objects in the window and appends it to the current Script window. This option is useful when you have multiple reports in the window.
dt = Open( "$SAMPLE_DATA/Wine Tasting.jmp" );
obj = dt << Partial Least Squares(
Y( :Hedonic, :Goes with meat, :Goes with dessert ),
X( :Price, :Sugar, :Alcohol, :Acidity ),
Go
);
obj << Save Script for All Objects;
Save Script for All Objects To Data Table
Syntax: obj << Save Script for All Objects To Data Table( <name> )
Description: Saves a script for all report objects to the current data table. This option is useful when you have multiple reports in the window. The script is named after the first platform unless you specify the script name in quotes.
Example 1
dt = Open( "$SAMPLE_DATA/Wine Tasting.jmp" );
dt << New Column( "_bycol",
Character,
Nominal,
set values( Repeat( {"A", "B"}, N Rows( dt ) )[1 :: N Rows( dt )] )
);
obj = dt << Partial Least Squares(
Y( :Hedonic, :Goes with meat, :Goes with dessert ),
X( :Price, :Sugar, :Alcohol, :Acidity ),
By( _bycol ),
Go
);
obj[1] << Save Script for All Objects To Data Table;
Example 2
dt = Open( "$SAMPLE_DATA/Wine Tasting.jmp" );
dt << New Column( "_bycol",
Character,
Nominal,
set values( Repeat( {"A", "B"}, N Rows( dt ) )[1 :: N Rows( dt )] )
);
obj = dt << Partial Least Squares(
Y( :Hedonic, :Goes with meat, :Goes with dessert ),
X( :Price, :Sugar, :Alcohol, :Acidity ),
By( _bycol ),
Go
);
obj[1] << Save Script for All Objects To Data Table( "My Script" );
Save Script to Data Table
Syntax: Save Script to Data Table( <name>, < <<Prompt(0|1)>, < <<Replace(0|1)> );
Description: Create a JSL script to produce this analysis, and save it as a table property in the data table.
dt = Open( "$SAMPLE_DATA/Wine Tasting.jmp" );
obj = dt << Partial Least Squares(
Y( :Hedonic, :Goes with meat, :Goes with dessert ),
X( :Price, :Sugar, :Alcohol, :Acidity ),
Go
);
obj << Save Script to Data Table( "My Analysis", <<Prompt( 0 ), <<Replace( 0 ) );
Save Script to Journal
Syntax: obj << Save Script to Journal
Description: Create a JSL script to produce this analysis, and add a Button to the journal containing this script.
dt = Open( "$SAMPLE_DATA/Wine Tasting.jmp" );
obj = dt << Partial Least Squares(
Y( :Hedonic, :Goes with meat, :Goes with dessert ),
X( :Price, :Sugar, :Alcohol, :Acidity ),
Go
);
obj << Save Script to Journal;
Save Script to Report
Syntax: obj << Save Script to Report
Description: Create a JSL script to produce this analysis, and show it in the report itself. Useful to preserve a printed record of what was done.
dt = Open( "$SAMPLE_DATA/Wine Tasting.jmp" );
obj = dt << Partial Least Squares(
Y( :Hedonic, :Goes with meat, :Goes with dessert ),
X( :Price, :Sugar, :Alcohol, :Acidity ),
Go
);
obj << Save Script to Report;
Save Script to Script Window
Syntax: obj << Save Script to Script Window
Description: Create a JSL script to produce this analysis, and append it to the current Script text window.
dt = Open( "$SAMPLE_DATA/Wine Tasting.jmp" );
obj = dt << Partial Least Squares(
Y( :Hedonic, :Goes with meat, :Goes with dessert ),
X( :Price, :Sugar, :Alcohol, :Acidity ),
Go
);
obj << Save Script to Script Window;
SendToByGroup
Syntax: SendToByGroup( {":Column == level"}, command );
Description: Sends platform commands or display customization commands to each level of a by-group.
dt = Open( "$SAMPLE_DATA/Big Class.jmp" );
dt << Distribution(
By( :Sex ),
SendToByGroup(
{:sex == "F"},
Continuous Distribution( Column( :weight ), Normal Quantile Plot( 1 ) )
),
SendToByGroup( {:sex == "M"}, Continuous Distribution( Column( :weight ) ) )
);
SendToEmbeddedScriptable
Syntax: SendToEmbeddedScriptable( Dispatch( "Outline name", "Element name", command );
Description: SendToEmbeddedScriptable restores settings of embedded scriptable objects.
dt = Open( "$SAMPLE_DATA/Reliability/Fan.jmp" );
dt << Life Distribution(
Y( :Time ),
Censor( :Censor ),
Censor Code( 1 ),
<<Fit Weibull,
SendToEmbeddedScriptable(
Dispatch(
{"Statistics", "Parametric Estimate - Weibull", "Profilers", "Density Profiler"},
{1, Confidence Intervals( 0 ), Term Value( Time( 6000, Lock( 0 ), Show( 1 ) ) )}
)
)
);
SendToReport
Syntax: SendToReport( Dispatch( "Outline name", "Element name", Element type, command );
Description: Send To Report is used in tandem with the Dispatch command to customize the appearance of a report.
dt = Open( "$SAMPLE_DATA/Big Class.jmp" );
dt << Distribution(
Nominal Distribution( Column( :age ) ),
Continuous Distribution( Column( :weight ) ),
SendToReport( Dispatch( "age", "Distrib Nom Hist", FrameBox, {Frame Size( 178, 318 )} ) )
);
Sync to Data Table Changes
Syntax: obj << Sync to Data Table Changes
Description: Sync with the exclude and data changes that have been made.
dt = Open( "$SAMPLE_DATA/Cities.jmp" );
dist = Distribution( Continuous Distribution( Column( :POP ) ) );
Wait( 1 );
dt << Delete Rows( dt << Get Rows Where( :Region == "W" ) );
dist << Sync To Data Table Changes;
Title
Syntax: obj << Title( "new title" )
Description: Sets the title of the platform.
dt = Open( "$SAMPLE_DATA/Wine Tasting.jmp" );
obj = dt << Partial Least Squares(
Y( :Hedonic, :Goes with meat, :Goes with dessert ),
X( :Price, :Sugar, :Alcohol, :Acidity ),
Go
);
obj << Title( "My Platform" );
Top Report
Syntax: obj << Top Report
Description: Returns a reference to the root node in the report.
dt = Open( "$SAMPLE_DATA/Wine Tasting.jmp" );
obj = dt << Partial Least Squares(
Y( :Hedonic, :Goes with meat, :Goes with dessert ),
X( :Price, :Sugar, :Alcohol, :Acidity ),
Go
);
r = obj << Top Report;
t = r[Outline Box( 1 )] << Get Title;
Show( t );
Transform Column
Syntax: obj = <Platform>(... Transform Column(<name>, Formula(<expression>), [Random Seed(<n>)], [Numeric|Character|Expression], [Continuous|Nominal|Ordinal|Unstructured Text], [column properties]) ...)
Description: Create a transform column in the local context of an object, usually a platform. The transform column is active only for the lifetime of the platform.
JMP Version Added: 16
dt = Open( "$SAMPLE_DATA/Big Class.jmp" );
dt << Distribution(
Transform Column( "age^2", Format( "Fixed Dec", 5, 0 ), Formula( :age * :age ) ),
Continuous Distribution( Column( :"age^2"n ) )
);
View Web XML
Syntax: obj << View Web XML
Description: Returns the XML code that is used to create the interactive HTML report.
dt = Open( "$SAMPLE_DATA/Big Class.jmp" );
obj = dt << Bivariate( Y( :Weight ), X( :Height ) );
xml = obj << View Web XML;
Window View
Syntax: obj = Partial Least Squares(...Window View( "Visible"|"Invisible"|"Private" )...)
Description: Set the type of the window to be created for the report. By default a Visible report window will be created. An Invisible window will not appear on screen, but is discoverable by functions such as Window(). A Private window responds to most window messages but is not discoverable and must be addressed through the report object
dt = Open( "$SAMPLE_DATA/Big Class.jmp" );
biv = dt << Bivariate( Window View( "Private" ), Y( :weight ), X( :height ), Fit Line );
eqn = Report( biv )["Linear Fit", Text Edit Box( 1 )] << Get Text;
biv << Close Window;
New Window( "Bivariate Equation",
Outline Box( "Big Class Linear Fit", Text Box( eqn, <<Set Base Font( "Title" ) ) )
);
Partial Least Squares Fit
Item Messages
Coefficient Plots
Syntax: obj << (Fit[number] << Coefficient Plots( state=0|1 ))
Description: Shows or hides plots of the model coefficients for each response across the X variables. There is a plot for the centered and scaled data and a plot for the original data.
dt = Open( "$SAMPLE_DATA/Baltic.jmp" );
obj = dt << Partial Least Squares(
Y( :ls, :ha, :dt ),
X(
:v1, :v2, :v3, :v4, :v5, :v6, :v7, :v8, :v9, :v10, :v11, :v12, :v13, :v14, :v15, :v16,
:v17, :v18, :v19, :v20, :v21, :v22, :v23, :v24, :v25, :v26, :v27
),
Fit( Number of Factors( 5 ) )
);
obj << (Fit[1] << Coefficient Plots( 1 ));
Correlation Loading Plot
Syntax: obj << (Fit[number] << Correlation Loading Plot( state=0|1 ))
Description: Shows or hides either a single scatterplot or a scatterplot matrix of the X and Y loadings overlaid on the same plot. The scatterplot matrix is shown if the specified number of factors is greater than 2.
Example 1
dt = Open( "$SAMPLE_DATA/Baltic.jmp" );
obj = dt << Partial Least Squares(
Y( :ls, :ha, :dt ),
X(
:v1, :v2, :v3, :v4, :v5, :v6, :v7, :v8, :v9, :v10, :v11, :v12, :v13, :v14, :v15, :v16,
:v17, :v18, :v19, :v20, :v21, :v22, :v23, :v24, :v25, :v26, :v27
),
Fit( Number of Factors( 5 ) )
);
obj << (Fit[1] << Correlation Loading Plot( 2 ));
Example 2
dt = Open( "$SAMPLE_DATA/Baltic.jmp" );
obj = dt << Partial Least Squares(
Y( :ls, :ha, :dt ),
X(
:v1, :v2, :v3, :v4, :v5, :v6, :v7, :v8, :v9, :v10, :v11, :v12, :v13, :v14, :v15, :v16,
:v17, :v18, :v19, :v20, :v21, :v22, :v23, :v24, :v25, :v26, :v27
),
Fit( Number of Factors( 5 ) )
);
obj << (Fit[1] << Correlation Loading Plot( 4 ));
Diagnostics Plots
Syntax: obj << (Fit[number] << Diagnostics Plots( state=0|1 ))
Description: Shows or hides diagnostic plots.
dt = Open( "$SAMPLE_DATA/Baltic.jmp" );
obj = dt << Partial Least Squares(
Y( :ls, :ha, :dt ),
X(
:v1, :v2, :v3, :v4, :v5, :v6, :v7, :v8, :v9, :v10, :v11, :v12, :v13, :v14, :v15, :v16,
:v17, :v18, :v19, :v20, :v21, :v22, :v23, :v24, :v25, :v26, :v27
),
Fit( Number of Factors( 5 ) )
);
obj << (Fit[1] << Diagnostics Plots( 1 ));
Distance Plots
Syntax: obj << (Fit[number] << Distance Plots( state=0|1 ))
Description: Shows or hides the distance plots. There is a plot of the distance from each observation to the X model, a plot of the distance from each observation to the Y model, and a scatterplot of distances to both the X and Y models.
dt = Open( "$SAMPLE_DATA/Baltic.jmp" );
obj = dt << Partial Least Squares(
Y( :ls, :ha, :dt ),
X(
:v1, :v2, :v3, :v4, :v5, :v6, :v7, :v8, :v9, :v10, :v11, :v12, :v13, :v14, :v15, :v16,
:v17, :v18, :v19, :v20, :v21, :v22, :v23, :v24, :v25, :v26, :v27
),
Fit( Number of Factors( 5 ) )
);
obj << (Fit[1] << Distance Plots( 1 ));
Fit Line
Syntax: obj << (Fit[number] << Fit Line( state=0|1 ))
Description: Shows or hides a fitted line through the points on the X-Y Scores Plots. On by default.
dt = Open( "$SAMPLE_DATA/Baltic.jmp" );
obj = dt << Partial Least Squares(
Y( :ls, :ha, :dt ),
X(
:v1, :v2, :v3, :v4, :v5, :v6, :v7, :v8, :v9, :v10, :v11, :v12, :v13, :v14, :v15, :v16,
:v17, :v18, :v19, :v20, :v21, :v22, :v23, :v24, :v25, :v26, :v27
),
Fit( Number of Factors( 5 ) )
);
Wait( 2 );
obj << (Fit[1] << Fit Line( 0 ));
Get Measures
Syntax: obj << (Fit[number] << Get Measures)
Description: Returns summary measures of fit from the model.
JMP Version Added: 16
dt = Open( "$SAMPLE_DATA/Baltic.jmp" );
obj = dt << Partial Least Squares(
Y( :ls, :ha, :dt ),
X(
:v1, :v2, :v3, :v4, :v5, :v6, :v7, :v8, :v9, :v10, :v11, :v12, :v13, :v14, :v15, :v16,
:v17, :v18, :v19, :v20, :v21, :v22, :v23, :v24, :v25, :v26, :v27
),
Fit( Number of Factors( 5 ) )
);
obj << (Fit[1] << Get Measures);
Loading Plots
Syntax: obj << (Fit[number] << Loading Plots( state=0|1 ))
Description: Shows or hides plots of the X and Y loadings for each extracted factor. There are separate plots for the X and Y variables.
dt = Open( "$SAMPLE_DATA/Baltic.jmp" );
obj = dt << Partial Least Squares(
Y( :ls, :ha, :dt ),
X(
:v1, :v2, :v3, :v4, :v5, :v6, :v7, :v8, :v9, :v10, :v11, :v12, :v13, :v14, :v15, :v16,
:v17, :v18, :v19, :v20, :v21, :v22, :v23, :v24, :v25, :v26, :v27
),
Fit( Number of Factors( 5 ) )
);
obj << (Fit[1] << Loading Plots( 1 ));
Loading Scatterplot Matrices
Syntax: obj << (Fit[number] << Loading Scatterplot Matrices( state=0|1 ))
Description: Shows or hides scatterplot matrices of the X and Y loadings. There are separate scatterplot matrices for the X and Y variables.
dt = Open( "$SAMPLE_DATA/Baltic.jmp" );
obj = dt << Partial Least Squares(
Y( :ls, :ha, :dt ),
X(
:v1, :v2, :v3, :v4, :v5, :v6, :v7, :v8, :v9, :v10, :v11, :v12, :v13, :v14, :v15, :v16,
:v17, :v18, :v19, :v20, :v21, :v22, :v23, :v24, :v25, :v26, :v27
),
Fit( Number of Factors( 5 ) )
);
obj << (Fit[1] << Loading Scatterplot Matrices( 1 ));
Make Model Using VIP
Syntax: obj << (Fit[number] << Make Model Using VIP)
Description: Opens and populates a launch window with the appropriate responses entered as Ys and the variables whose VIPs exceed the specified threshold entered as Xs.
dt = Open( "$SAMPLE_DATA/Baltic.jmp" );
obj = dt << Partial Least Squares(
Y( :ls, :ha, :dt ),
X(
:v1, :v2, :v3, :v4, :v5, :v6, :v7, :v8, :v9, :v10, :v11, :v12, :v13, :v14, :v15, :v16,
:v17, :v18, :v19, :v20, :v21, :v22, :v23, :v24, :v25, :v26, :v27
),
Fit( Number of Factors( 5 ) )
);
obj << (Fit[1] << Make Model Using VIP);
Model Driven Multivariate Control Chart for Saved X Scores
Syntax: obj << (Fit[number] << Model Driven Multivariate Control Chart for Saved X Scores)
Description: Saves the formulas for each X Score and launches the Model Driven Multivariate Control Chart (MDMCC) launch window.
JMP Version Added: 16
dt = Open( "$SAMPLE_DATA/Baltic.jmp" );
obj = dt << Partial Least Squares(
Y( :ls, :ha, :dt ),
X(
:v1, :v2, :v3, :v4, :v5, :v6, :v7, :v8, :v9, :v10, :v11, :v12, :v13, :v14, :v15, :v16,
:v17, :v18, :v19, :v20, :v21, :v22, :v23, :v24, :v25, :v26, :v27
),
Fit( Number of Factors( 5 ) )
);
obj << (Fit[1] << Model Driven Multivariate Control Chart for Saved X Scores);
Percent Variation Plots
Syntax: obj << (Fit[number] << Percent Variation Plots( state=0|1 ))
Description: Shows or hides plots of the percent of variation explained for X Effects and for Y Responses.
dt = Open( "$SAMPLE_DATA/Baltic.jmp" );
obj = dt << Partial Least Squares(
Y( :ls, :ha, :dt ),
X(
:v1, :v2, :v3, :v4, :v5, :v6, :v7, :v8, :v9, :v10, :v11, :v12, :v13, :v14, :v15, :v16,
:v17, :v18, :v19, :v20, :v21, :v22, :v23, :v24, :v25, :v26, :v27
),
Fit( Number of Factors( 5 ) )
);
obj << (Fit[1] << Percent variation plots( 1 ));
Profiler
Syntax: obj << (Fit[number] << Profiler( state=0|1 ))
Description: Shows or hides a profiler for each response.
dt = Open( "$SAMPLE_DATA/Baltic.jmp" );
obj = dt << Partial Least Squares(
Y( :ls, :ha, :dt ),
X(
:v1, :v2, :v3, :v4, :v5, :v6, :v7, :v8, :v9, :v10, :v11, :v12, :v13, :v14, :v15, :v16,
:v17, :v18, :v19, :v20, :v21, :v22, :v23, :v24, :v25, :v26, :v27
),
Fit( Number of Factors( 5 ) )
);
obj << (Fit[1] << Profiler( 1 ));
Profiler for Predicteds
Syntax: obj << (Fit[number] << Model Driven Multivariate Control Chart for Saved X Scores)
Description: Saves the formulas for each Y as a function of the X Score and launches the Profiler launch window.
JMP Version Added: 16
dt = Open( "$SAMPLE_DATA/Baltic.jmp" );
obj = dt << Partial Least Squares(
Y( :ls, :ha, :dt ),
X(
:v1, :v2, :v3, :v4, :v5, :v6, :v7, :v8, :v9, :v10, :v11, :v12, :v13, :v14, :v15, :v16,
:v17, :v18, :v19, :v20, :v21, :v22, :v23, :v24, :v25, :v26, :v27
),
Fit( Number of Factors( 5 ) )
);
obj << (Fit[1] << Profiler for Predicteds);
Publish Prediction Formula
Syntax: obj << (Fit[number] << Publish Prediction Formula)
Description: Creates a prediction formula and publishes it as a formula column script in the Formula Depot platform.
dt = Open( "$SAMPLE_DATA/Baltic.jmp" );
obj = dt << Partial Least Squares(
Y( :ls, :ha, :dt ),
X(
:v1, :v2, :v3, :v4, :v5, :v6, :v7, :v8, :v9, :v10, :v11, :v12, :v13, :v14, :v15, :v16,
:v17, :v18, :v19, :v20, :v21, :v22, :v23, :v24, :v25, :v26, :v27
),
Fit( Number of Factors( 5 ) )
);
obj << (Fit[1] << Publish Prediction Formula);
Publish Score Formula
Syntax: obj << (Fit[number] << Publish Score Formula)
Description: Creates X and Y score formulas and saves them as formula column scripts in the Formula Depot platform.
dt = Open( "$SAMPLE_DATA/Baltic.jmp" );
obj = dt << Partial Least Squares(
Y( :ls, :ha, :dt ),
X(
:v1, :v2, :v3, :v4, :v5, :v6, :v7, :v8, :v9, :v10, :v11, :v12, :v13, :v14, :v15, :v16,
:v17, :v18, :v19, :v20, :v21, :v22, :v23, :v24, :v25, :v26, :v27
),
Fit( Number of Factors( 5 ) )
);
obj << (Fit[1] << Publish Score Formula);
Remove Fit
Syntax: obj << (Fit[number] << Remove Fit)
Description: Removes the model report from the main platform report.
dt = Open( "$SAMPLE_DATA/Baltic.jmp" );
obj = dt << Partial Least Squares(
Y( :ls, :ha, :dt ),
X(
:v1, :v2, :v3, :v4, :v5, :v6, :v7, :v8, :v9, :v10, :v11, :v12, :v13, :v14, :v15, :v16,
:v17, :v18, :v19, :v20, :v21, :v22, :v23, :v24, :v25, :v26, :v27
),
Fit( Number of Factors( 5 ) )
);
Wait( 3 );
obj << (Fit[1] << Remove Fit);
Save Distance
Syntax: obj << (Fit[number] << Save Distance)
Description: Saves new columns to the original data table. The new columns contain the Distance to X Model (DModX) and Distance to Y Model (DModY) values.
dt = Open( "$SAMPLE_DATA/Baltic.jmp" );
obj = dt << Partial Least Squares(
Y( :ls, :ha, :dt ),
X(
:v1, :v2, :v3, :v4, :v5, :v6, :v7, :v8, :v9, :v10, :v11, :v12, :v13, :v14, :v15, :v16,
:v17, :v18, :v19, :v20, :v21, :v22, :v23, :v24, :v25, :v26, :v27
),
Fit( Number of Factors( 5 ) )
);
obj << (Fit[1] << Save Distance);
Save Distance as X Score Formula
Syntax: obj << (Fit[number] << Save Distance as X Score Formula)
Description: Saves new formula columns to the original data table. The new columns contain the Distance to X Model (DModX) and Distance to Y Model (DModY) formulas that are functions of the X Score formulas.
JMP Version Added: 16
dt = Open( "$SAMPLE_DATA/Baltic.jmp" );
obj = dt << Partial Least Squares(
Y( :ls, :ha, :dt ),
X(
:v1, :v2, :v3, :v4, :v5, :v6, :v7, :v8, :v9, :v10, :v11, :v12, :v13, :v14, :v15, :v16,
:v17, :v18, :v19, :v20, :v21, :v22, :v23, :v24, :v25, :v26, :v27
),
Fit( Number of Factors( 5 ) )
);
obj << (Fit[1] << Save Distance as X Score Formula);
Save Imputation
Syntax: obj << (Fit[number] << Save Imputation)
Description: Saves columns to a new data table. For each X and Y variable, there is a column that contains the original data column with missing values replaced by their imputed values.
dt = Open( "$SAMPLE_DATA/Cities.jmp" );
obj = dt << Partial Least Squares(
Y( :Y ),
X( :OZONE, :CO, :SO2, :NO, :PM10, :Lead ),
Impute Missing Data( 1 ),
Imputation Method( "EM" ),
Max Iterations( 2 ),
Validation Method( None, Initial Number of Factors( 6 ) ),
Fit( Method( NIPALS ), Number of Factors( 6 ) )
);
obj << (Fit[1] << Save Imputation);
Save Indiv Confidence Limit Formula
Syntax: obj << (Fit[number] << Save Indiv Confidence Limit Formula)
Description: Saves new formula columns to the original data table. For each Y variable, there are columns for the lower and upper confidence limits for an individual prediction that are functions of the X Score formulas. The default level for alpha is 0.05, which creates 95% confidence limits.
dt = Open( "$SAMPLE_DATA/Baltic.jmp" );
obj = dt << Partial Least Squares(
Y( :ls, :ha, :dt ),
X(
:v1, :v2, :v3, :v4, :v5, :v6, :v7, :v8, :v9, :v10, :v11, :v12, :v13, :v14, :v15, :v16,
:v17, :v18, :v19, :v20, :v21, :v22, :v23, :v24, :v25, :v26, :v27
),
Fit( Number of Factors( 5 ) )
);
obj << (Fit[1] << Save Indiv Confidence Limit Formula);
Save Loadings
Syntax: obj << (Fit[number] << Save Loadings)
Description: Saves columns to two new data tables. There is a data table that contains the loadings for the X variables and a data table that contains the loadings for the Y variables.
dt = Open( "$SAMPLE_DATA/Baltic.jmp" );
obj = dt << Partial Least Squares(
Y( :ls, :ha, :dt ),
X(
:v1, :v2, :v3, :v4, :v5, :v6, :v7, :v8, :v9, :v10, :v11, :v12, :v13, :v14, :v15, :v16,
:v17, :v18, :v19, :v20, :v21, :v22, :v23, :v24, :v25, :v26, :v27
),
Fit( Number of Factors( 5 ) )
);
obj << (Fit[1] << Save Loadings);
Save Mean Confidence Limit Formula
Syntax: obj << (Fit[number] << Save Mean Confidence Limit Formula( <alpha=0.05> ))
Description: Saves new formula columns to the original data table. For each Y variable, there are columns for the lower and upper confidence limits for the mean response that are functions of the X Score formulas. The default level for alpha is 0.05, which creates 95% confidence limits.
dt = Open( "$SAMPLE_DATA/Baltic.jmp" );
obj = dt << Partial Least Squares(
Y( :ls, :ha, :dt ),
X(
:v1, :v2, :v3, :v4, :v5, :v6, :v7, :v8, :v9, :v10, :v11, :v12, :v13, :v14, :v15, :v16,
:v17, :v18, :v19, :v20, :v21, :v22, :v23, :v24, :v25, :v26, :v27
),
Fit( Number of Factors( 5 ) )
);
obj << (Fit[1] << Save Mean Confidence Limit Formula);
Save Percent Variation Explained For X Effects
Syntax: obj << (Fit[number] << Save Percent Variation Explained For X Effects)
Description: Saves columns to a new data table. For each X variable, there is a column that contains the percent of variation explained across all extracted factors.
dt = Open( "$SAMPLE_DATA/Baltic.jmp" );
obj = dt << Partial Least Squares(
Y( :ls, :ha, :dt ),
X(
:v1, :v2, :v3, :v4, :v5, :v6, :v7, :v8, :v9, :v10, :v11, :v12, :v13, :v14, :v15, :v16,
:v17, :v18, :v19, :v20, :v21, :v22, :v23, :v24, :v25, :v26, :v27
),
Fit( Number of Factors( 5 ) )
);
obj << (Fit[1] << Save Percent Variation Explained For X Effects);
Save Percent Variation Explained For Y Responses
Syntax: obj << (Fit[number] << Save Percent Variation Explained For Y Responses)
Description: Saves columns to a new data table. For each Y variable, there is a column that contains the percent of variation explained across all extracted factors.
dt = Open( "$SAMPLE_DATA/Baltic.jmp" );
obj = dt << Partial Least Squares(
Y( :ls, :ha, :dt ),
X(
:v1, :v2, :v3, :v4, :v5, :v6, :v7, :v8, :v9, :v10, :v11, :v12, :v13, :v14, :v15, :v16,
:v17, :v18, :v19, :v20, :v21, :v22, :v23, :v24, :v25, :v26, :v27
),
Fit( Number of Factors( 5 ) )
);
obj << (Fit[1] << Save Percent Variation Explained For Y Responses);
Save Prediction As X Score Formula
Syntax: obj << (Fit[number] << Save Prediction as X Score Formula)
Description: Saves new formula columns to the original data table. For each Y variable, there is a column that contains a prediction formula that is a function of the X Score formulas.
dt = Open( "$SAMPLE_DATA/Baltic.jmp" );
obj = dt << Partial Least Squares(
Y( :ls, :ha, :dt ),
X(
:v1, :v2, :v3, :v4, :v5, :v6, :v7, :v8, :v9, :v10, :v11, :v12, :v13, :v14, :v15, :v16,
:v17, :v18, :v19, :v20, :v21, :v22, :v23, :v24, :v25, :v26, :v27
),
Fit( Number of Factors( 5 ) )
);
obj << (Fit[1] << Save Prediction as X Score Formula);
Save Prediction Formula
Syntax: obj << (Fit[number] << Save Prediction Formula)
Description: Saves new formula columns to the original data table. For each Y variable, there is a column that contains a prediction formula that is a function of the X variables.
dt = Open( "$SAMPLE_DATA/Baltic.jmp" );
obj = dt << Partial Least Squares(
Y( :ls, :ha, :dt ),
X(
:v1, :v2, :v3, :v4, :v5, :v6, :v7, :v8, :v9, :v10, :v11, :v12, :v13, :v14, :v15, :v16,
:v17, :v18, :v19, :v20, :v21, :v22, :v23, :v24, :v25, :v26, :v27
),
Fit( Number of Factors( 5 ) )
);
obj << (Fit[1] << Save Prediction Formula);
Save Score Formula
Syntax: obj << (Fit[number] << Save Score Formula)
Description: Saves new formula columns to the original data table. For each extracted factor, there is a column that contains an X Score formula and a column that contains a Y Score formula. The X Score formulas are functions of the X variables and the Y Score formulas are functions of the X Score formulas.
dt = Open( "$SAMPLE_DATA/Baltic.jmp" );
obj = dt << Partial Least Squares(
Y( :ls, :ha, :dt ),
X(
:v1, :v2, :v3, :v4, :v5, :v6, :v7, :v8, :v9, :v10, :v11, :v12, :v13, :v14, :v15, :v16,
:v17, :v18, :v19, :v20, :v21, :v22, :v23, :v24, :v25, :v26, :v27
),
Fit( Number of Factors( 5 ) )
);
obj << (Fit[1] << Save Score Formula);
Save Scores
Syntax: obj << (Fit[number] << Save Scores)
Description: Saves new columns to the original data table. For each extracted factor, there is a column that contains the X scores and a column that contains the Y scores.
dt = Open( "$SAMPLE_DATA/Baltic.jmp" );
obj = dt << Partial Least Squares(
Y( :ls, :ha, :dt ),
X(
:v1, :v2, :v3, :v4, :v5, :v6, :v7, :v8, :v9, :v10, :v11, :v12, :v13, :v14, :v15, :v16,
:v17, :v18, :v19, :v20, :v21, :v22, :v23, :v24, :v25, :v26, :v27
),
Fit( Number of Factors( 5 ) )
);
obj << (Fit[1] << Save Scores);
Save Standard Errors of Prediction Formula
Syntax: obj << (Fit[number] << Save Standard Errors of Prediction Formula)
Description: Saves new formula columns to the original data table. For each Y variable, there is a column that contains the formula for the standard error of the predicted mean that is a function of the X variables.
dt = Open( "$SAMPLE_DATA/Baltic.jmp" );
obj = dt << Partial Least Squares(
Y( :ls, :ha, :dt ),
X(
:v1, :v2, :v3, :v4, :v5, :v6, :v7, :v8, :v9, :v10, :v11, :v12, :v13, :v14, :v15, :v16,
:v17, :v18, :v19, :v20, :v21, :v22, :v23, :v24, :v25, :v26, :v27
),
Fit( Number of Factors( 5 ) )
);
obj << (Fit[1] << Save Standard Errors of Prediction Formula);
Save Standardized Loadings
Syntax: obj << (Fit[number] << Save Standardized Loadings)
Description: Saves columns to two new data tables. There is a data table that contains the standardized loadings for the X variables and a data table that contains the standardized loadings for the Y variables.
dt = Open( "$SAMPLE_DATA/Baltic.jmp" );
obj = dt << Partial Least Squares(
Y( :ls, :ha, :dt ),
X(
:v1, :v2, :v3, :v4, :v5, :v6, :v7, :v8, :v9, :v10, :v11, :v12, :v13, :v14, :v15, :v16,
:v17, :v18, :v19, :v20, :v21, :v22, :v23, :v24, :v25, :v26, :v27
),
Fit( Number of Factors( 5 ) )
);
obj << (Fit[1] << Save Standardized Loadings);
Save Standardized Scores
Syntax: obj << (Fit[number] << Save Standardized Scores)
Description: Saves new columns to the original data table. The new columns contain the X and Y standardized scores for each extracted factor.
dt = Open( "$SAMPLE_DATA/Baltic.jmp" );
obj = dt << Partial Least Squares(
Y( :ls, :ha, :dt ),
X(
:v1, :v2, :v3, :v4, :v5, :v6, :v7, :v8, :v9, :v10, :v11, :v12, :v13, :v14, :v15, :v16,
:v17, :v18, :v19, :v20, :v21, :v22, :v23, :v24, :v25, :v26, :v27
),
Fit( Number of Factors( 5 ) )
);
obj << (Fit[1] << Save Standardized Scores);
Save T Square
Syntax: obj << (Fit[number] << Save T Square)
Description: Saves a new formula column to the original data table. The new column contains the T squared formula as a function of the X variables.
dt = Open( "$SAMPLE_DATA/Baltic.jmp" );
obj = dt << Partial Least Squares(
Y( :ls, :ha, :dt ),
X(
:v1, :v2, :v3, :v4, :v5, :v6, :v7, :v8, :v9, :v10, :v11, :v12, :v13, :v14, :v15, :v16,
:v17, :v18, :v19, :v20, :v21, :v22, :v23, :v24, :v25, :v26, :v27
),
Fit( Number of Factors( 5 ) )
);
obj << (Fit[1] << Save T Square);
Save T Square as X Score Formula
Syntax: obj << (Fit[number] << Save T Square as X Score Formula)
Description: Saves a new formula column to the original data table. The new column contains the T squared formula as a function of the X Score formulas.
JMP Version Added: 16
dt = Open( "$SAMPLE_DATA/Baltic.jmp" );
obj = dt << Partial Least Squares(
Y( :ls, :ha, :dt ),
X(
:v1, :v2, :v3, :v4, :v5, :v6, :v7, :v8, :v9, :v10, :v11, :v12, :v13, :v14, :v15, :v16,
:v17, :v18, :v19, :v20, :v21, :v22, :v23, :v24, :v25, :v26, :v27
),
Fit( Number of Factors( 5 ) )
);
obj << (Fit[1] << Save T Square as X Score Formula);
Save Validation
Syntax: obj << (Fit[number] << Save Validation)
Description: Saves a new column to the original data table. The new column contains numbers that indicate how each observation was used in validation.
dt = Open( "$SAMPLE_DATA/Baltic.jmp" );
obj = dt << Partial Least Squares(
Y( :ls, :ha, :dt ),
X(
:v1, :v2, :v3, :v4, :v5, :v6, :v7, :v8, :v9, :v10, :v11, :v12, :v13, :v14, :v15, :v16,
:v17, :v18, :v19, :v20, :v21, :v22, :v23, :v24, :v25, :v26, :v27
),
Fit( Number of Factors( 5 ) )
);
obj << (Fit[1] << Save Validation);
Save X Predicted Values
Syntax: obj << (Fit[number] << Save X Predicted Values)
Description: Saves new columns to the original data table. For each X variable, there is a column that contains the predicted X values.
dt = Open( "$SAMPLE_DATA/Baltic.jmp" );
obj = dt << Partial Least Squares(
Y( :ls, :ha, :dt ),
X(
:v1, :v2, :v3, :v4, :v5, :v6, :v7, :v8, :v9, :v10, :v11, :v12, :v13, :v14, :v15, :v16,
:v17, :v18, :v19, :v20, :v21, :v22, :v23, :v24, :v25, :v26, :v27
),
Fit( Number of Factors( 5 ) )
);
obj << (Fit[1] << Save X Predicted Values);
Save X Prediction as X Score Formula
Syntax: obj << (Fit[number] << Save X Prediction as X Score Formula)
Description: Saves new formula columns to the original data table. For each X variable, there is a column that contains a prediction formula that is a function of the X Score formulas.
JMP Version Added: 16
dt = Open( "$SAMPLE_DATA/Baltic.jmp" );
obj = dt << Partial Least Squares(
Y( :ls, :ha, :dt ),
X(
:v1, :v2, :v3, :v4, :v5, :v6, :v7, :v8, :v9, :v10, :v11, :v12, :v13, :v14, :v15, :v16,
:v17, :v18, :v19, :v20, :v21, :v22, :v23, :v24, :v25, :v26, :v27
),
Fit( Number of Factors( 5 ) )
);
obj << (Fit[1] << Save X Prediction as X Score Formula);
Save X Residuals
Syntax: obj << (Fit[number] << Save X Residuals)
Description: Saves new columns to the original data table. For each X variable, there is a column that contains the X residual values.
dt = Open( "$SAMPLE_DATA/Baltic.jmp" );
obj = dt << Partial Least Squares(
Y( :ls, :ha, :dt ),
X(
:v1, :v2, :v3, :v4, :v5, :v6, :v7, :v8, :v9, :v10, :v11, :v12, :v13, :v14, :v15, :v16,
:v17, :v18, :v19, :v20, :v21, :v22, :v23, :v24, :v25, :v26, :v27
),
Fit( Number of Factors( 5 ) )
);
obj << (Fit[1] << Save X Residuals);
Save X Score Formula
Syntax: obj << Save X Score Formula
Save X Weights
Syntax: obj << (Fit[number] << Save X Weights)
Description: Saves columns to a new data table. For each extracted factor, there is a column that contains the weights for the X variables.
dt = Open( "$SAMPLE_DATA/Baltic.jmp" );
obj = dt << Partial Least Squares(
Y( :ls, :ha, :dt ),
X(
:v1, :v2, :v3, :v4, :v5, :v6, :v7, :v8, :v9, :v10, :v11, :v12, :v13, :v14, :v15, :v16,
:v17, :v18, :v19, :v20, :v21, :v22, :v23, :v24, :v25, :v26, :v27
),
Fit( Number of Factors( 5 ) )
);
obj << (Fit[1] << Save X Weights);
Save Y Predicted Values
Syntax: obj << (Fit[number] << Save Y Predicted Values)
Description: Saves new columns to the original data table. For each Y variable, there is a column that contains the predicted Y values.
dt = Open( "$SAMPLE_DATA/Baltic.jmp" );
obj = dt << Partial Least Squares(
Y( :ls, :ha, :dt ),
X(
:v1, :v2, :v3, :v4, :v5, :v6, :v7, :v8, :v9, :v10, :v11, :v12, :v13, :v14, :v15, :v16,
:v17, :v18, :v19, :v20, :v21, :v22, :v23, :v24, :v25, :v26, :v27
),
Fit( Number of Factors( 5 ) )
);
obj << (Fit[1] << Save Y Predicted Values);
Save Y Residuals
Syntax: obj << (Fit[number] << Save Y Residuals)
Description: Saves new columns to the original data table. For each Y variable, there is a column that contains the Y residual values.
dt = Open( "$SAMPLE_DATA/Baltic.jmp" );
obj = dt << Partial Least Squares(
Y( :ls, :ha, :dt ),
X(
:v1, :v2, :v3, :v4, :v5, :v6, :v7, :v8, :v9, :v10, :v11, :v12, :v13, :v14, :v15, :v16,
:v17, :v18, :v19, :v20, :v21, :v22, :v23, :v24, :v25, :v26, :v27
),
Fit( Number of Factors( 5 ) )
);
obj << (Fit[1] << Save Y Residuals);
Score Scatterplot Matrices
Syntax: obj << (Fit[number] << Score Scatterplot Matrices( state=0|1 ))
Description: Shows or hides a scatterplot matrix of the X scores and a scatterplot matrix of the Y scores.
dt = Open( "$SAMPLE_DATA/Baltic.jmp" );
obj = dt << Partial Least Squares(
Y( :ls, :ha, :dt ),
X(
:v1, :v2, :v3, :v4, :v5, :v6, :v7, :v8, :v9, :v10, :v11, :v12, :v13, :v14, :v15, :v16,
:v17, :v18, :v19, :v20, :v21, :v22, :v23, :v24, :v25, :v26, :v27
),
Fit( Number of Factors( 5 ) )
);
obj << (Fit[1] << Score Scatterplot Matrices( 1 ));
Set VIP Threshold
Syntax: obj << (Fit[number] << Set VIP Threshold( number=0.8 ))
Description: Sets the threshold level for the Variable Importance Plot, Variance Importance Table, and the VIP vs Coefficients Plots. "0.8" by default.
dt = Open( "$SAMPLE_DATA/Baltic.jmp" );
obj = dt << Partial Least Squares(
Y( :ls, :ha, :dt ),
X(
:v1, :v2, :v3, :v4, :v5, :v6, :v7, :v8, :v9, :v10, :v11, :v12, :v13, :v14, :v15, :v16,
:v17, :v18, :v19, :v20, :v21, :v22, :v23, :v24, :v25, :v26, :v27
),
Fit( Number of Factors( 5 ) )
);
obj << (Fit[1] << Variable Importance Plot( 1 ));
Wait( 3 );
obj << (Fit[1] << Set VIP Threshold( 0.5 ));
Show Confidence Band
Syntax: obj << (Fit[number] << Show Confidence Band( state=0|1 ))
Description: Shows or hides 95% confidence bands for the fitted lines on the X-Y Scores Plots.
dt = Open( "$SAMPLE_DATA/Baltic.jmp" );
obj = dt << Partial Least Squares(
Y( :ls, :ha, :dt ),
X(
:v1, :v2, :v3, :v4, :v5, :v6, :v7, :v8, :v9, :v10, :v11, :v12, :v13, :v14, :v15, :v16,
:v17, :v18, :v19, :v20, :v21, :v22, :v23, :v24, :v25, :v26, :v27
),
Fit( Number of Factors( 5 ) )
);
obj << (Fit[1] << Show Confidence Band( 1 ));
Spectral Profiler
Syntax: obj << (Fit[number] << Spectral Profiler( state=0|1 ))
Description: Shows or hides a single profiler where all of the response variables appear in the first cell of the plot.
dt = Open( "$SAMPLE_DATA/Baltic.jmp" );
obj = dt << Partial Least Squares(
Y( :ls, :ha, :dt ),
X(
:v1, :v2, :v3, :v4, :v5, :v6, :v7, :v8, :v9, :v10, :v11, :v12, :v13, :v14, :v15, :v16,
:v17, :v18, :v19, :v20, :v21, :v22, :v23, :v24, :v25, :v26, :v27
),
Fit( Number of Factors( 5 ) )
);
obj << (Fit[1] << Spectral Profiler( 1 ));
T Square Plot
Syntax: obj << (Fit[number] << T Square Plot( state=0|1 ))
Description: Shows or hides a plot of T square statistics for each observation, along with a control limit.
dt = Open( "$SAMPLE_DATA/Baltic.jmp" );
obj = dt << Partial Least Squares(
Y( :ls, :ha, :dt ),
X(
:v1, :v2, :v3, :v4, :v5, :v6, :v7, :v8, :v9, :v10, :v11, :v12, :v13, :v14, :v15, :v16,
:v17, :v18, :v19, :v20, :v21, :v22, :v23, :v24, :v25, :v26, :v27
),
Fit( Number of Factors( 5 ) )
);
obj << (Fit[1] << T Square Plot( 1 ));
VIP vs Coefficients Plots
Syntax: obj << (Fit[number] << VIP vs Coefficients Plots( state=0|1 ))
Description: Shows or hides a plot of the VIP statistics against the model coefficients.
dt = Open( "$SAMPLE_DATA/Baltic.jmp" );
obj = dt << Partial Least Squares(
Y( :ls, :ha, :dt ),
X(
:v1, :v2, :v3, :v4, :v5, :v6, :v7, :v8, :v9, :v10, :v11, :v12, :v13, :v14, :v15, :v16,
:v17, :v18, :v19, :v20, :v21, :v22, :v23, :v24, :v25, :v26, :v27
),
Fit( Number of Factors( 5 ) )
);
obj << (Fit[1] << VIP vs Coefficients Plots( 1 ));
Variable Importance Plot
Syntax: obj << (Fit[number] << Variable Importance Plot( state=0|1 ))
Description: Shows or hides a plot that summarizes the contribution each variable makes to the model.
dt = Open( "$SAMPLE_DATA/Baltic.jmp" );
obj = dt << Partial Least Squares(
Y( :ls, :ha, :dt ),
X(
:v1, :v2, :v3, :v4, :v5, :v6, :v7, :v8, :v9, :v10, :v11, :v12, :v13, :v14, :v15, :v16,
:v17, :v18, :v19, :v20, :v21, :v22, :v23, :v24, :v25, :v26, :v27
),
Fit( Number of Factors( 5 ) )
);
obj << (Fit[1] << Variable Importance Plot( 1 ));