Multiple Factor Analysis

Associated Constructors

Multiple Factor Analysis

Syntax: Multiple Factor Analysis( MFABLocks({"Block 1", columns},{"Block 2", columns}) )

Description: Analyzes agreement among panelists in sensory data analysis.

JMP Version Added: 14


dt = Open( "$SAMPLE_DATA/Wine Sensory Data.jmp" );
dt << Multiple Factor Analysis(
    Product ID( :Vineyard ),
    Z( :Region ),
    MFA Blocks(
        {"Susan Fruity etc.", :Susan Fruity, :Susan Flowery, :Susan Spicy, :Susan Crispness},
        {"Florence Flowery etc.", :Florence Flowery, :Florence Crispness, :Florence Tannin,
        :Florence Savory, :Florence Lightness},
        {"Xavier Fruity etc.", :Xavier Fruity, :Xavier Spicy, :Xavier Crispness,
        :Xavier Alcohol, :Xavier Savory, :Xavier Lightness},
        {"Robert Fruity etc.", :Robert Fruity, :Robert Flowery, :Robert Spicy,
        :Robert Crispness, :Robert Tannin, :Robert Alcohol, :Robert Savory, :Robert Lightness
        },
        {"Paula Fruity etc.", :Paula Fruity, :Paula Flowery, :Paula Spicy, :Paula Crispness,
        :Paula Tannin, :Paula Savory},
        {"Monica Fruity etc.", :Monica Fruity, :Monica Flowery, :Monica Spicy, :Monica Tannin,
        :Monica Alcohol, :Monica Savory, :Monica Lightness},
        {"Frank Fruity etc.", :Frank Fruity, :Frank Flowery, :Frank Spicy, :Frank Crispness,
        :Frank Tannin, :Frank Alcohol, :Frank Savory, :Frank Lightness}
    )
);

Columns

By

Syntax: obj = Multiple Factor Analysis(...<By( column(s) )>...)

Description: Performs a separate analysis for each level of the specified column.

JMP Version Added: 14


dt = Open( "$SAMPLE_DATA/Wine Sensory Data.jmp" );
dt << New Column( "_bycol",
    Character,
    Nominal,
    set values( Repeat( {"A", "B"}, N Rows( dt ) )[1 :: N Rows( dt )] )
);
dt << Multiple Factor Analysis(
    Product ID( :Vineyard ),
    Z( :Region ),
    MFA Blocks(
        {"Susan Fruity etc.", :Susan Fruity, :Susan Flowery, :Susan Spicy, :Susan Crispness},
        {"Florence Flowery etc.", :Florence Flowery, :Florence Crispness, :Florence Tannin,
        :Florence Savory, :Florence Lightness},
        {"Xavier Fruity etc.", :Xavier Fruity, :Xavier Spicy, :Xavier Crispness,
        :Xavier Alcohol, :Xavier Savory, :Xavier Lightness},
        {"Robert Fruity etc.", :Robert Fruity, :Robert Flowery, :Robert Spicy,
        :Robert Crispness, :Robert Tannin, :Robert Alcohol, :Robert Savory, :Robert Lightness
        },
        {"Paula Fruity etc.", :Paula Fruity, :Paula Flowery, :Paula Spicy, :Paula Crispness,
        :Paula Tannin, :Paula Savory},
        {"Monica Fruity etc.", :Monica Fruity, :Monica Flowery, :Monica Spicy, :Monica Tannin,
        :Monica Alcohol, :Monica Savory, :Monica Lightness},
        {"Frank Fruity etc.", :Frank Fruity, :Frank Flowery, :Frank Spicy, :Frank Crispness,
        :Frank Tannin, :Frank Alcohol, :Frank Savory, :Frank Lightness}
    ),
    By( _bycol )
);

Freq

Syntax: obj = Multiple Factor Analysis(...<Freq( column )>...)

Description: Specifies a column whose values assign a frequency to each row for the analysis.

JMP Version Added: 14


dt = Open( "$SAMPLE_DATA/Wine Sensory Data.jmp" );
dt << New Column( "_freqcol", Numeric, Continuous, Formula( Random Integer( 1, 5 ) ) );
dt << Multiple Factor Analysis(
    Product ID( :Vineyard ),
    Z( :Region ),
    MFA Blocks(
        {"Susan Fruity etc.", :Susan Fruity, :Susan Flowery, :Susan Spicy, :Susan Crispness},
        {"Florence Flowery etc.", :Florence Flowery, :Florence Crispness, :Florence Tannin,
        :Florence Savory, :Florence Lightness},
        {"Xavier Fruity etc.", :Xavier Fruity, :Xavier Spicy, :Xavier Crispness,
        :Xavier Alcohol, :Xavier Savory, :Xavier Lightness},
        {"Robert Fruity etc.", :Robert Fruity, :Robert Flowery, :Robert Spicy,
        :Robert Crispness, :Robert Tannin, :Robert Alcohol, :Robert Savory, :Robert Lightness
        },
        {"Paula Fruity etc.", :Paula Fruity, :Paula Flowery, :Paula Spicy, :Paula Crispness,
        :Paula Tannin, :Paula Savory},
        {"Monica Fruity etc.", :Monica Fruity, :Monica Flowery, :Monica Spicy, :Monica Tannin,
        :Monica Alcohol, :Monica Savory, :Monica Lightness},
        {"Frank Fruity etc.", :Frank Fruity, :Frank Flowery, :Frank Spicy, :Frank Crispness,
        :Frank Tannin, :Frank Alcohol, :Frank Savory, :Frank Lightness}
    ),
    Freq( _freqcol )
);

MFA Blocks

Syntax: obj = Multiple Factor Analysis(...<MFA Blocks( column )>...)

Description: Specifies groups of columns that should be treated as sub-tables within the multiple factor analysis.

JMP Version Added: 14


dt = Open( "$SAMPLE_DATA/Wine Sensory Data.jmp" );
dt << Multiple Factor Analysis(
    Product ID( :Wine ),
    MFA Blocks(
        {"Susan", :Susan Fruity, :Susan Flowery, :Susan Spicy, :Susan Crispness},
        {"Florence", :Florence Flowery, :Florence Crispness, :Florence Tannin,
        :Florence Savory, :Florence Lightness}
    )
);

Product ID

Syntax: obj = Multiple Factor Analysis(...<Product ID( column )>...)

Description: Specifies columns of items or products to be analyzed.

JMP Version Added: 14


dt = Open( "$SAMPLE_DATA/Wine Sensory Data.jmp" );
dt << Multiple Factor Analysis(
    Product ID( :Wine ),
    MFA Blocks(
        {"Susan", :Susan Fruity, :Susan Flowery, :Susan Spicy, :Susan Crispness},
        {"Florence", :Florence Flowery, :Florence Crispness, :Florence Tannin,
        :Florence Savory, :Florence Lightness}
    )
);

Supplementary

Syntax: obj = Multiple Factor Analysis(...<Supplementary( column )>...)

Description: Specifies one or more supplementary variables. Supplementary variables are not used in any of the calculations in the platform and including them does not affect the results. These variables can improve data interpretation or be used in future analyses.

JMP Version Added: 14


dt = Open( "$SAMPLE_DATA/Wine Sensory Data.jmp" );
dt << Multiple Factor Analysis(
    Product ID( :Wine ),
    Z( :Region ),
    MFA Blocks(
        {"Susan", :Susan Fruity, :Susan Flowery, :Susan Spicy, :Susan Crispness},
        {"Florence", :Florence Flowery, :Florence Crispness, :Florence Tannin,
        :Florence Savory, :Florence Lightness}
    )
);

Weight

Syntax: obj = Multiple Factor Analysis(...<Weight( column )>...)

Description: Specifies a column whose values assign a weight to each row for the analysis.

JMP Version Added: 14


dt = Open( "$SAMPLE_DATA/Wine Sensory Data.jmp" );
dt << New Column( "_weightcol", Numeric, Continuous, Formula( Random Beta( 1, 1 ) ) );
dt << Multiple Factor Analysis(
    Product ID( :Vineyard ),
    Z( :Region ),
    MFA Blocks(
        {"Susan Fruity etc.", :Susan Fruity, :Susan Flowery, :Susan Spicy, :Susan Crispness},
        {"Florence Flowery etc.", :Florence Flowery, :Florence Crispness, :Florence Tannin,
        :Florence Savory, :Florence Lightness},
        {"Xavier Fruity etc.", :Xavier Fruity, :Xavier Spicy, :Xavier Crispness,
        :Xavier Alcohol, :Xavier Savory, :Xavier Lightness},
        {"Robert Fruity etc.", :Robert Fruity, :Robert Flowery, :Robert Spicy,
        :Robert Crispness, :Robert Tannin, :Robert Alcohol, :Robert Savory, :Robert Lightness
        },
        {"Paula Fruity etc.", :Paula Fruity, :Paula Flowery, :Paula Spicy, :Paula Crispness,
        :Paula Tannin, :Paula Savory},
        {"Monica Fruity etc.", :Monica Fruity, :Monica Flowery, :Monica Spicy, :Monica Tannin,
        :Monica Alcohol, :Monica Savory, :Monica Lightness},
        {"Frank Fruity etc.", :Frank Fruity, :Frank Flowery, :Frank Spicy, :Frank Crispness,
        :Frank Tannin, :Frank Alcohol, :Frank Savory, :Frank Lightness}
    ),
    Weight( _weightcol )
);

Z

Syntax: obj = Multiple Factor Analysis(...<Z( column )>...)

Description: Specifies one or more supplementary variables. Supplementary variables are not used in any of the calculations in the platform and including them does not affect the results. These variables can improve data interpretation or be used in future analyses.

JMP Version Added: 14


dt = Open( "$SAMPLE_DATA/Wine Sensory Data.jmp" );
dt << Multiple Factor Analysis(
    Product ID( :Wine ),
    Z( :Region ),
    MFA Blocks(
        {"Susan", :Susan Fruity, :Susan Flowery, :Susan Spicy, :Susan Crispness},
        {"Florence", :Florence Flowery, :Florence Crispness, :Florence Tannin,
        :Florence Savory, :Florence Lightness}
    )
);

Item Messages

Arrow Lines

Syntax: obj << Arrow Lines( state=0|1 )

Description: Shows or hides the arrow lines in the graph. On by default.

JMP Version Added: 14


dt = Open( "$SAMPLE_DATA/Wine Sensory Data.jmp" );
obj = dt << Multiple Factor Analysis(
    MFA Blocks(
        {"Carolyn Peppery etc.", :Carolyn Peppery, :Carolyn Tannic, :Carolyn Aromatic,
        :Carolyn Berry Notes},
        {"Susan Fruity etc.", :Susan Fruity, :Susan Flowery, :Susan Spicy, :Susan Crispness}
    )
);
obj << Arrow Lines( 0 );

Biplot

Syntax: obj << Biplot( state=0|1 )

Description: Shows or hides a plot that overlays the score plot and the loading plot for the specified number of components.

JMP Version Added: 14


dt = Open( "$SAMPLE_DATA/Wine Sensory Data.jmp" );
obj = dt << Multiple Factor Analysis(
    MFA Blocks(
        {"Carolyn Peppery etc.", :Carolyn Peppery, :Carolyn Tannic, :Carolyn Aromatic,
        :Carolyn Berry Notes},
        {"Susan Fruity etc.", :Susan Fruity, :Susan Flowery, :Susan Spicy, :Susan Crispness}
    )
);
obj << Biplot( 1 );

Biplot Select Component

Syntax: obj<<Biplot Select Component( 1, 3 )

Description: Selects the components that are used as axes in the biplot.

JMP Version Added: 14


dt = Open( "$SAMPLE_DATA/Wine Sensory Data.jmp" );
obj = dt << Multiple Factor Analysis(
    MFA Blocks(
        {"Carolyn Peppery etc.", :Carolyn Peppery, :Carolyn Tannic, :Carolyn Aromatic,
        :Carolyn Berry Notes},
        {"Susan Fruity etc.", :Susan Fruity, :Susan Flowery, :Susan Spicy, :Susan Crispness}
    )
);
obj << Biplot Select Component( 1, 3 );

Block Partial Contributions

Syntax: obj << Block Partial Contributions( state=0|1 )

Description: Displays or hides block contributions which is the sum of the contributions of its variables.

JMP Version Added: 14


dt = Open( "$SAMPLE_DATA/Wine Sensory Data.jmp" );
obj = dt << Multiple Factor Analysis(
    MFA Blocks(
        {"Carolyn Peppery etc.", :Carolyn Peppery, :Carolyn Tannic, :Carolyn Aromatic,
        :Carolyn Berry Notes},
        {"Susan Fruity etc.", :Susan Fruity, :Susan Flowery, :Susan Spicy, :Susan Crispness}
    )
);
obj << Block Partial Contributions( 1 );

Block Partial Inertias

Syntax: obj << Block Partial Inertias( state=0|1 )

Description: Displays or hides rescaled block contributions, such that the sum of inertia across blocks equals the principal component's eigenvalue.

JMP Version Added: 14


dt = Open( "$SAMPLE_DATA/Wine Sensory Data.jmp" );
obj = dt << Multiple Factor Analysis(
    MFA Blocks(
        {"Carolyn Peppery etc.", :Carolyn Peppery, :Carolyn Tannic, :Carolyn Aromatic,
        :Carolyn Berry Notes},
        {"Susan Fruity etc.", :Susan Fruity, :Susan Flowery, :Susan Spicy, :Susan Crispness}
    )
);
obj << Block Partial Inertias( 1 );

Block Partial and Consensus Correlations

Syntax: obj << Block Partial and Consensus Correlations( state=0|1 )

Description: Displays or hides a matrix of coefficients indicating the correlations between partial and consensus scores on each principal component dimension.

JMP Version Added: 14


dt = Open( "$SAMPLE_DATA/Wine Sensory Data.jmp" );
obj = dt << Multiple Factor Analysis(
    MFA Blocks(
        {"Carolyn Peppery etc.", :Carolyn Peppery, :Carolyn Tannic, :Carolyn Aromatic,
        :Carolyn Berry Notes},
        {"Susan Fruity etc.", :Susan Fruity, :Susan Flowery, :Susan Spicy, :Susan Crispness}
    )
);
obj << Block Partial and Consensus Correlations( 1 );

Block Squared Cosines

Syntax: obj << Block Squared Cosines( state=0|1 )

Description: Displays or hides the proportion of overlap in variance between blocks and principal component dimensions.

JMP Version Added: 14


dt = Open( "$SAMPLE_DATA/Wine Sensory Data.jmp" );
obj = dt << Multiple Factor Analysis(
    MFA Blocks(
        {"Carolyn Peppery etc.", :Carolyn Peppery, :Carolyn Tannic, :Carolyn Aromatic,
        :Carolyn Berry Notes},
        {"Susan Fruity etc.", :Susan Fruity, :Susan Flowery, :Susan Spicy, :Susan Crispness}
    )
);
obj << Block Squared Cosines( 1 );

Block Weights

Syntax: obj << Block Weights( state=0|1 )

Description: Displays or hides a matrix of block weight which is the inverse of each block's first singular value.

JMP Version Added: 14


dt = Open( "$SAMPLE_DATA/Wine Sensory Data.jmp" );
obj = dt << Multiple Factor Analysis(
    MFA Blocks(
        {"Carolyn Peppery etc.", :Carolyn Peppery, :Carolyn Tannic, :Carolyn Aromatic,
        :Carolyn Berry Notes},
        {"Susan Fruity etc.", :Susan Fruity, :Susan Flowery, :Susan Spicy, :Susan Crispness}
    )
);
obj << Block Weights( 1 );

Consensus Map

Syntax: obj << Consensus Map( state=0|1 )

Description: Displays or hides a Consensus Map which overlays the centroid scores and partial scores from each block. On by default.

JMP Version Added: 14


dt = Open( "$SAMPLE_DATA/Wine Sensory Data.jmp" );
obj = dt << Multiple Factor Analysis(
    MFA Blocks(
        {"Carolyn Peppery etc.", :Carolyn Peppery, :Carolyn Tannic, :Carolyn Aromatic,
        :Carolyn Berry Notes},
        {"Susan Fruity etc.", :Susan Fruity, :Susan Flowery, :Susan Spicy, :Susan Crispness}
    )
);
obj << Consensus Map( 0 );

Consensus Map Select Component

Syntax: obj<<Consensus Map Select Component( 1, 3 )

Description: Selects the components that are used as axes in the consensus map.

JMP Version Added: 14


dt = Open( "$SAMPLE_DATA/Wine Sensory Data.jmp" );
obj = dt << Multiple Factor Analysis(
    MFA Blocks(
        {"Carolyn Peppery etc.", :Carolyn Peppery, :Carolyn Tannic, :Carolyn Aromatic,
        :Carolyn Berry Notes},
        {"Susan Fruity etc.", :Susan Fruity, :Susan Flowery, :Susan Spicy, :Susan Crispness}
    )
);
obj << Consensus Map Select Component( 1, 3 );

Eigenvalues

Syntax: obj << Eigenvalues( state=0|1 )

Description: Shows or hides the sorted eigenvalues, their percent of variation, and the cumulative percent of variation.

JMP Version Added: 14


dt = Open( "$SAMPLE_DATA/Wine Sensory Data.jmp" );
obj = dt << Multiple Factor Analysis(
    MFA Blocks(
        {"Carolyn Peppery etc.", :Carolyn Peppery, :Carolyn Tannic, :Carolyn Aromatic,
        :Carolyn Berry Notes},
        {"Susan Fruity etc.", :Susan Fruity, :Susan Flowery, :Susan Spicy, :Susan Crispness}
    )
);
obj << Eigenvalues( 1 );

Eigenvectors

Syntax: obj << Eigenvectors( state=0|1 )

Description: Shows or hides a report of the eigenvectors for each of the principal components.

JMP Version Added: 14


dt = Open( "$SAMPLE_DATA/Wine Sensory Data.jmp" );
obj = dt << Multiple Factor Analysis(
    MFA Blocks(
        {"Carolyn Peppery etc.", :Carolyn Peppery, :Carolyn Tannic, :Carolyn Aromatic,
        :Carolyn Berry Notes},
        {"Susan Fruity etc.", :Susan Fruity, :Susan Flowery, :Susan Spicy, :Susan Crispness}
    )
);
obj << Eigenvectors( 1 );

Highlight Product

Syntax: obj<<Partial Axes Plot Select Component( 1, 3 )

Description: Highlights product clusters based on the specified inertial value.

JMP Version Added: 14


dt = Open( "$SAMPLE_DATA/Wine Sensory Data.jmp" );
obj = dt << Multiple Factor Analysis(
    MFA Blocks(
        {"Carolyn Peppery etc.", :Carolyn Peppery, :Carolyn Tannic, :Carolyn Aromatic,
        :Carolyn Berry Notes},
        {"Susan Fruity etc.", :Susan Fruity, :Susan Flowery, :Susan Spicy, :Susan Crispness}
    ),
    Consensus Map( 1 )
);
obj << Highlight Product( "Small Inertia", 4 );

Lg Coefficients

Syntax: obj << Lg Coefficients( state=0|1 )

Description: Displays or hides a matrix of coefficients indicating the similarity between blocks. Equivalent to unstandardized RV correlations.

JMP Version Added: 14


dt = Open( "$SAMPLE_DATA/Wine Sensory Data.jmp" );
obj = dt << Multiple Factor Analysis(
    MFA Blocks(
        {"Carolyn Peppery etc.", :Carolyn Peppery, :Carolyn Tannic, :Carolyn Aromatic,
        :Carolyn Berry Notes},
        {"Susan Fruity etc.", :Susan Fruity, :Susan Flowery, :Susan Spicy, :Susan Crispness}
    )
);
obj << Lg Coefficients( 1 );

Partial Axes Plot

Syntax: obj << Partial Axes Plot( state=0|1 )

Description: Displays or hides a Partial Axes Plot which shows the link between centroid plane and blocks.

JMP Version Added: 14


dt = Open( "$SAMPLE_DATA/Wine Sensory Data.jmp" );
obj = dt << Multiple Factor Analysis(
    MFA Blocks(
        {"Carolyn Peppery etc.", :Carolyn Peppery, :Carolyn Tannic, :Carolyn Aromatic,
        :Carolyn Berry Notes},
        {"Susan Fruity etc.", :Susan Fruity, :Susan Flowery, :Susan Spicy, :Susan Crispness}
    )
);
obj << Partial Axes Plot( 1 );

Partial Axes Plot Select Component

Syntax: obj<<Partial Axes Plot Select Component( 1, 3 )

Description: Selects the components that are used as axes in the Partial Axes Plot.

JMP Version Added: 14


dt = Open( "$SAMPLE_DATA/Wine Sensory Data.jmp" );
obj = dt << Multiple Factor Analysis(
    MFA Blocks(
        {"Carolyn Peppery etc.", :Carolyn Peppery, :Carolyn Tannic, :Carolyn Aromatic,
        :Carolyn Berry Notes},
        {"Susan Fruity etc.", :Susan Fruity, :Susan Flowery, :Susan Spicy, :Susan Crispness}
    ),
    Partial Axes Plot( 1 )
);
obj << Partial Axes Plot Select component( 1, 3 );

RV Correlations

Syntax: obj << RV Correlations( state=0|1 )

Description: Displays or hides a matrix of squared correlation coefficients between blocks. RV coefficients range from 0 to 1.

JMP Version Added: 14


dt = Open( "$SAMPLE_DATA/Wine Sensory Data.jmp" );
obj = dt << Multiple Factor Analysis(
    MFA Blocks(
        {"Carolyn Peppery etc.", :Carolyn Peppery, :Carolyn Tannic, :Carolyn Aromatic,
        :Carolyn Berry Notes},
        {"Susan Fruity etc.", :Susan Fruity, :Susan Flowery, :Susan Spicy, :Susan Crispness}
    )
);
obj << RV Correlations( 1 );

Save Block Partial Scores

Syntax: obj << Save Block Partial Scores

Description: Saves block partial scores to new columns in a data table.

JMP Version Added: 14


dt = Open( "$SAMPLE_DATA/Wine Sensory Data.jmp" );
obj = dt << Multiple Factor Analysis(
    MFA Blocks(
        {"Carolyn Peppery etc.", :Carolyn Peppery, :Carolyn Tannic, :Carolyn Aromatic,
        :Carolyn Berry Notes},
        {"Susan Fruity etc.", :Susan Fruity, :Susan Flowery, :Susan Spicy, :Susan Crispness}
    )
);
obj << Save Block Partial Scores();

Save Individual Partial Contributions

Syntax: obj << Save Individual Partial Contributions

Description: Saves individual partial contributions to new columns in the data table.

JMP Version Added: 14


dt = Open( "$SAMPLE_DATA/Wine Sensory Data.jmp" );
obj = dt << Multiple Factor Analysis(
    MFA Blocks(
        {"Carolyn Peppery etc.", :Carolyn Peppery, :Carolyn Tannic, :Carolyn Aromatic,
        :Carolyn Berry Notes},
        {"Susan Fruity etc.", :Susan Fruity, :Susan Flowery, :Susan Spicy, :Susan Crispness}
    )
);
obj << Save Individual Partial Contributions();

Save Individual Scores

Syntax: obj << Save Individual Scores

Description: Saves the given number of principal components to new columns in the data table.

JMP Version Added: 14


dt = Open( "$SAMPLE_DATA/Wine Sensory Data.jmp" );
obj = dt << Multiple Factor Analysis(
    MFA Blocks(
        {"Carolyn Peppery etc.", :Carolyn Peppery, :Carolyn Tannic, :Carolyn Aromatic,
        :Carolyn Berry Notes},
        {"Susan Fruity etc.", :Susan Fruity, :Susan Flowery, :Susan Spicy, :Susan Crispness}
    )
);
obj << Save Individual Scores();

Save Individual Squared Cosines

Syntax: obj << Save Individual Squared Cosines

Description: Saves individual squared cosines to new columns in the data table.

JMP Version Added: 14


dt = Open( "$SAMPLE_DATA/Wine Sensory Data.jmp" );
obj = dt << Multiple Factor Analysis(
    MFA Blocks(
        {"Carolyn Peppery etc.", :Carolyn Peppery, :Carolyn Tannic, :Carolyn Aromatic,
        :Carolyn Berry Notes},
        {"Susan Fruity etc.", :Susan Fruity, :Susan Flowery, :Susan Spicy, :Susan Crispness}
    )
);
obj << Save Individual Squared Cosines();

Save Partial Axes Coordinates

Syntax: obj << Save Partial Axes Coordinates

Description: Saves partial axes coordinates to new columns in a data table.

JMP Version Added: 14


dt = Open( "$SAMPLE_DATA/Wine Sensory Data.jmp" );
obj = dt << Multiple Factor Analysis(
    MFA Blocks(
        {"Carolyn Peppery etc.", :Carolyn Peppery, :Carolyn Tannic, :Carolyn Aromatic,
        :Carolyn Berry Notes},
        {"Susan Fruity etc.", :Susan Fruity, :Susan Flowery, :Susan Spicy, :Susan Crispness}
    )
);
obj << Save Partial Axes Coordinates();

Show Labels

Syntax: obj << Show Labels( state=0|1 )

Description: Displays or hides the labels of points in the graph.

JMP Version Added: 14


dt = Open( "$SAMPLE_DATA/Wine Sensory Data.jmp" );
obj = dt << Multiple Factor Analysis(
    MFA Blocks(
        {"Carolyn Peppery etc.", :Carolyn Peppery, :Carolyn Tannic, :Carolyn Aromatic,
        :Carolyn Berry Notes},
        {"Susan Fruity etc.", :Susan Fruity, :Susan Flowery, :Susan Spicy, :Susan Crispness}
    )
);
obj << Show Labels( 1 );

Summary Plot Select Component

Syntax: obj<<Summary Plot Select Component( 1, 3 )

Description: Selects the components that are used as axes in the summary plots.

JMP Version Added: 14


dt = Open( "$SAMPLE_DATA/Wine Sensory Data.jmp" );
obj = dt << Multiple Factor Analysis(
    MFA Blocks(
        {"Carolyn Peppery etc.", :Carolyn Peppery, :Carolyn Tannic, :Carolyn Aromatic,
        :Carolyn Berry Notes},
        {"Susan Fruity etc.", :Susan Fruity, :Susan Flowery, :Susan Spicy, :Susan Crispness}
    )
);
obj << Summary Plot Select Component( 1, 3 );

Summary Plots

Syntax: obj << Summary Plots( state=0|1 )

Description: Shows or hides an outline node that contains a plot of the eigenvalues, a score plot, and a loading plot. On by default.

JMP Version Added: 14


dt = Open( "$SAMPLE_DATA/Wine Sensory Data.jmp" );
obj = dt << Multiple Factor Analysis(
    MFA Blocks(
        {"Carolyn Peppery etc.", :Carolyn Peppery, :Carolyn Tannic, :Carolyn Aromatic,
        :Carolyn Berry Notes},
        {"Susan Fruity etc.", :Susan Fruity, :Susan Flowery, :Susan Spicy, :Susan Crispness}
    )
);
obj << Summary Plots( 0 );

Variable Loadings

Syntax: obj << Variable Loadings( state=0|1 )

Description: Displays or hides a report showing the columns corresponding to the component loadings.

JMP Version Added: 14


dt = Open( "$SAMPLE_DATA/Wine Sensory Data.jmp" );
obj = dt << Multiple Factor Analysis(
    MFA Blocks(
        {"Carolyn Peppery etc.", :Carolyn Peppery, :Carolyn Tannic, :Carolyn Aromatic,
        :Carolyn Berry Notes},
        {"Susan Fruity etc.", :Susan Fruity, :Susan Flowery, :Susan Spicy, :Susan Crispness}
    )
);
obj << Variable Loadings( 1 );

Variable Partial Contributions

Syntax: obj << Variable Partial Contributions( state=0|1 )

Description: Shows or hides a table that contains the partial contributions of variables and a plot of the partial contributions for the first three principal components.

JMP Version Added: 14


dt = Open( "$SAMPLE_DATA/Wine Sensory Data.jmp" );
obj = dt << Multiple Factor Analysis(
    MFA Blocks(
        {"Carolyn Peppery etc.", :Carolyn Peppery, :Carolyn Tannic, :Carolyn Aromatic,
        :Carolyn Berry Notes},
        {"Susan Fruity etc.", :Susan Fruity, :Susan Flowery, :Susan Spicy, :Susan Crispness}
    )
);
obj << Variable Partial Contributions( 1 );

Variable Squared Cosines

Syntax: obj << Variable Squared Cosines( state=0|1 )

Description: Shows or hides a table that contains the squared cosines of variables.

JMP Version Added: 14


dt = Open( "$SAMPLE_DATA/Wine Sensory Data.jmp" );
obj = dt << Multiple Factor Analysis(
    MFA Blocks(
        {"Carolyn Peppery etc.", :Carolyn Peppery, :Carolyn Tannic, :Carolyn Aromatic,
        :Carolyn Berry Notes},
        {"Susan Fruity etc.", :Susan Fruity, :Susan Flowery, :Susan Spicy, :Susan Crispness}
    )
);
obj << Variable Squared Cosines( 1 );

Shared Item Messages

Action

Syntax: obj << Action

Description: All-purpose trapdoor within a platform to insert expressions to evaluate. Temporarily sets the DisplayBox and DataTable contexts to the Platform.


dt = Open( "$SAMPLE_DATA/Big Class.jmp" );
dt << Bivariate(
    Y( :height ),
    X( :weight ),
    Action( Distribution( Y( :height, :weight ), Histograms Only ) )
);

Apply Preset

Syntax: Apply Preset( preset ); Apply Preset( source, label, <Folder( folder {, folder2, ...} )> )

Description: Apply a previously created preset to the object, updating the options and customizations to match the saved settings.

JMP Version Added: 18

Anonymous preset


dt = Open( "$SAMPLE_DATA/Big Class.jmp" );
obj = dt << Oneway( Y( :height ), X( :sex ), t Test( 1 ) );
preset = obj << New Preset();
dt2 = Open( "$SAMPLE_DATA/Dogs.jmp" );
obj2 = dt2 << Oneway( Y( :LogHist0 ), X( :drug ) );
Wait( 1 );
obj2 << Apply Preset( preset );

Search by name


dt = Open( "$SAMPLE_DATA/Big Class.jmp" );
obj = dt << Oneway( Y( :height ), X( :sex ) );
Wait( 1 );
obj << Apply Preset( "Sample Presets", "Compare Distributions" );

Search within folder(s)


dt = Open( "$SAMPLE_DATA/Big Class.jmp" );
obj = dt << Oneway( Y( :height ), X( :sex ) );
Wait( 1 );
obj << Apply Preset( "Sample Presets", "t-Tests", Folder( "Compare Means" ) );

Automatic Recalc

Syntax: obj << Automatic Recalc( state=0|1 )

Description: Redoes the analysis automatically for exclude and data changes. If the Automatic Recalc option is turned on, you should consider using Wait(0) commands to ensure that the exclude and data changes take effect before the recalculation.


dt = Open( "$SAMPLE_DATA/Wine Sensory Data.jmp" );
dt << Multiple Factor Analysis(
    Product ID( :Vineyard ),
    Z( :Region ),
    MFA Blocks(
        {"Susan Fruity etc.", :Susan Fruity, :Susan Flowery, :Susan Spicy, :Susan Crispness},
        {"Florence Flowery etc.", :Florence Flowery, :Florence Crispness, :Florence Tannin,
        :Florence Savory, :Florence Lightness},
        {"Xavier Fruity etc.", :Xavier Fruity, :Xavier Spicy, :Xavier Crispness,
        :Xavier Alcohol, :Xavier Savory, :Xavier Lightness},
        {"Robert Fruity etc.", :Robert Fruity, :Robert Flowery, :Robert Spicy,
        :Robert Crispness, :Robert Tannin, :Robert Alcohol, :Robert Savory, :Robert Lightness
        },
        {"Paula Fruity etc.", :Paula Fruity, :Paula Flowery, :Paula Spicy, :Paula Crispness,
        :Paula Tannin, :Paula Savory},
        {"Monica Fruity etc.", :Monica Fruity, :Monica Flowery, :Monica Spicy, :Monica Tannin,
        :Monica Alcohol, :Monica Savory, :Monica Lightness},
        {"Frank Fruity etc.", :Frank Fruity, :Frank Flowery, :Frank Spicy, :Frank Crispness,
        :Frank Tannin, :Frank Alcohol, :Frank Savory, :Frank Lightness}
    )
);
obj << Automatic Recalc( 1 );
dt << Select Rows( 5 ) << Exclude( 1 );

Broadcast

Syntax: obj << Broadcast(message)

Description: Broadcasts a message to a platform. If return results from individual objects are tables, they are concatenated if possible, and the final format is identical to either the result from the Save Combined Table option in a Table Box or the result from the Concatenate option using a Source column. Other than those, results are stored in a list and returned.

JMP Version Added: 18


dt = Open( "$SAMPLE_DATA/Quality Control/Diameter.jmp" );
objs = Control Chart Builder(
    Variables( Subgroup( :DAY ), Y( :DIAMETER ) ),
    By( :OPERATOR )
);
objs[1] << Broadcast( Save Summaries );

Column Switcher

Syntax: obj << Column Switcher(column reference, {column reference, ...}, < Title(title) >, < Close Outline(0|1) >, < Retain Axis Settings(0|1) >, < Layout(0|1) >)

Description: Adds a control panel for changing the platform's variables


dt = Open( "$SAMPLE_DATA/Car Poll.jmp" );
obj = dt << Contingency( Y( :size ), X( :marital status ) );
ColumnSwitcherObject = obj << Column Switcher(
    :marital status,
    {:sex, :country, :marital status}
);

Copy ByGroup Script

Syntax: obj << Copy ByGroup Script

Description: Create a JSL script to produce this analysis, and put it on the clipboard.


dt = Open( "$SAMPLE_DATA/Wine Sensory Data.jmp" );
dt << New Column( "_bycol",
    Character,
    Nominal,
    set values( Repeat( {"A", "B"}, N Rows( dt ) )[1 :: N Rows( dt )] )
);
dt << Multiple Factor Analysis(
    Product ID( :Vineyard ),
    Z( :Region ),
    MFA Blocks(
        {"Susan Fruity etc.", :Susan Fruity, :Susan Flowery, :Susan Spicy, :Susan Crispness},
        {"Florence Flowery etc.", :Florence Flowery, :Florence Crispness, :Florence Tannin,
        :Florence Savory, :Florence Lightness},
        {"Xavier Fruity etc.", :Xavier Fruity, :Xavier Spicy, :Xavier Crispness,
        :Xavier Alcohol, :Xavier Savory, :Xavier Lightness},
        {"Robert Fruity etc.", :Robert Fruity, :Robert Flowery, :Robert Spicy,
        :Robert Crispness, :Robert Tannin, :Robert Alcohol, :Robert Savory, :Robert Lightness
        },
        {"Paula Fruity etc.", :Paula Fruity, :Paula Flowery, :Paula Spicy, :Paula Crispness,
        :Paula Tannin, :Paula Savory},
        {"Monica Fruity etc.", :Monica Fruity, :Monica Flowery, :Monica Spicy, :Monica Tannin,
        :Monica Alcohol, :Monica Savory, :Monica Lightness},
        {"Frank Fruity etc.", :Frank Fruity, :Frank Flowery, :Frank Spicy, :Frank Crispness,
        :Frank Tannin, :Frank Alcohol, :Frank Savory, :Frank Lightness}
    ),
    By( _bycol )
);
obj[1] << Copy ByGroup Script;

Copy Script

Syntax: obj << Copy Script

Description: Create a JSL script to produce this analysis, and put it on the clipboard.


dt = Open( "$SAMPLE_DATA/Wine Sensory Data.jmp" );
dt << Multiple Factor Analysis(
    Product ID( :Vineyard ),
    Z( :Region ),
    MFA Blocks(
        {"Susan Fruity etc.", :Susan Fruity, :Susan Flowery, :Susan Spicy, :Susan Crispness},
        {"Florence Flowery etc.", :Florence Flowery, :Florence Crispness, :Florence Tannin,
        :Florence Savory, :Florence Lightness},
        {"Xavier Fruity etc.", :Xavier Fruity, :Xavier Spicy, :Xavier Crispness,
        :Xavier Alcohol, :Xavier Savory, :Xavier Lightness},
        {"Robert Fruity etc.", :Robert Fruity, :Robert Flowery, :Robert Spicy,
        :Robert Crispness, :Robert Tannin, :Robert Alcohol, :Robert Savory, :Robert Lightness
        },
        {"Paula Fruity etc.", :Paula Fruity, :Paula Flowery, :Paula Spicy, :Paula Crispness,
        :Paula Tannin, :Paula Savory},
        {"Monica Fruity etc.", :Monica Fruity, :Monica Flowery, :Monica Spicy, :Monica Tannin,
        :Monica Alcohol, :Monica Savory, :Monica Lightness},
        {"Frank Fruity etc.", :Frank Fruity, :Frank Flowery, :Frank Spicy, :Frank Crispness,
        :Frank Tannin, :Frank Alcohol, :Frank Savory, :Frank Lightness}
    )
);
obj << Copy Script;

Data Table Window

Syntax: obj << Data Table Window

Description: Move the data table window for this analysis to the front.


dt = Open( "$SAMPLE_DATA/Wine Sensory Data.jmp" );
dt << Multiple Factor Analysis(
    Product ID( :Vineyard ),
    Z( :Region ),
    MFA Blocks(
        {"Susan Fruity etc.", :Susan Fruity, :Susan Flowery, :Susan Spicy, :Susan Crispness},
        {"Florence Flowery etc.", :Florence Flowery, :Florence Crispness, :Florence Tannin,
        :Florence Savory, :Florence Lightness},
        {"Xavier Fruity etc.", :Xavier Fruity, :Xavier Spicy, :Xavier Crispness,
        :Xavier Alcohol, :Xavier Savory, :Xavier Lightness},
        {"Robert Fruity etc.", :Robert Fruity, :Robert Flowery, :Robert Spicy,
        :Robert Crispness, :Robert Tannin, :Robert Alcohol, :Robert Savory, :Robert Lightness
        },
        {"Paula Fruity etc.", :Paula Fruity, :Paula Flowery, :Paula Spicy, :Paula Crispness,
        :Paula Tannin, :Paula Savory},
        {"Monica Fruity etc.", :Monica Fruity, :Monica Flowery, :Monica Spicy, :Monica Tannin,
        :Monica Alcohol, :Monica Savory, :Monica Lightness},
        {"Frank Fruity etc.", :Frank Fruity, :Frank Flowery, :Frank Spicy, :Frank Crispness,
        :Frank Tannin, :Frank Alcohol, :Frank Savory, :Frank Lightness}
    )
);
obj << Data Table Window;

Get By Levels

Syntax: obj << Get By Levels

Description: Returns an associative array mapping the by group columns to their values.

JMP Version Added: 18


dt = Open( "$SAMPLE_DATA/Big Class.jmp" );
biv = dt << Bivariate( X( :height ), Y( :weight ), By( :sex ) );
biv << Get By Levels;

Get ByGroup Script

Syntax: obj << Get ByGroup Script

Description: Creates a script (JSL) to produce this analysis and returns it as an expression.


dt = Open( "$SAMPLE_DATA/Wine Sensory Data.jmp" );
dt << New Column( "_bycol",
    Character,
    Nominal,
    set values( Repeat( {"A", "B"}, N Rows( dt ) )[1 :: N Rows( dt )] )
);
dt << Multiple Factor Analysis(
    Product ID( :Vineyard ),
    Z( :Region ),
    MFA Blocks(
        {"Susan Fruity etc.", :Susan Fruity, :Susan Flowery, :Susan Spicy, :Susan Crispness},
        {"Florence Flowery etc.", :Florence Flowery, :Florence Crispness, :Florence Tannin,
        :Florence Savory, :Florence Lightness},
        {"Xavier Fruity etc.", :Xavier Fruity, :Xavier Spicy, :Xavier Crispness,
        :Xavier Alcohol, :Xavier Savory, :Xavier Lightness},
        {"Robert Fruity etc.", :Robert Fruity, :Robert Flowery, :Robert Spicy,
        :Robert Crispness, :Robert Tannin, :Robert Alcohol, :Robert Savory, :Robert Lightness
        },
        {"Paula Fruity etc.", :Paula Fruity, :Paula Flowery, :Paula Spicy, :Paula Crispness,
        :Paula Tannin, :Paula Savory},
        {"Monica Fruity etc.", :Monica Fruity, :Monica Flowery, :Monica Spicy, :Monica Tannin,
        :Monica Alcohol, :Monica Savory, :Monica Lightness},
        {"Frank Fruity etc.", :Frank Fruity, :Frank Flowery, :Frank Spicy, :Frank Crispness,
        :Frank Tannin, :Frank Alcohol, :Frank Savory, :Frank Lightness}
    ),
    By( _bycol )
);
t = obj[1] << Get ByGroup Script;
Show( t );

Get Container

Syntax: obj << Get Container

Description: Returns a reference to the container box that holds the content for the object.

General


dt = Open( "$SAMPLE_DATA/Wine Sensory Data.jmp" );
dt << Multiple Factor Analysis(
    Product ID( :Vineyard ),
    Z( :Region ),
    MFA Blocks(
        {"Susan Fruity etc.", :Susan Fruity, :Susan Flowery, :Susan Spicy, :Susan Crispness},
        {"Florence Flowery etc.", :Florence Flowery, :Florence Crispness, :Florence Tannin,
        :Florence Savory, :Florence Lightness},
        {"Xavier Fruity etc.", :Xavier Fruity, :Xavier Spicy, :Xavier Crispness,
        :Xavier Alcohol, :Xavier Savory, :Xavier Lightness},
        {"Robert Fruity etc.", :Robert Fruity, :Robert Flowery, :Robert Spicy,
        :Robert Crispness, :Robert Tannin, :Robert Alcohol, :Robert Savory, :Robert Lightness
        },
        {"Paula Fruity etc.", :Paula Fruity, :Paula Flowery, :Paula Spicy, :Paula Crispness,
        :Paula Tannin, :Paula Savory},
        {"Monica Fruity etc.", :Monica Fruity, :Monica Flowery, :Monica Spicy, :Monica Tannin,
        :Monica Alcohol, :Monica Savory, :Monica Lightness},
        {"Frank Fruity etc.", :Frank Fruity, :Frank Flowery, :Frank Spicy, :Frank Crispness,
        :Frank Tannin, :Frank Alcohol, :Frank Savory, :Frank Lightness}
    )
);
t = obj << Get Container;
Show( (t << XPath( "//OutlineBox" )) << Get Title );

Platform with Filter


dt = Open( "$SAMPLE_DATA/Big Class.jmp" );
gb = Graph Builder(
    Show Control Panel( 0 ),
    Variables( X( :height ), Y( :weight ) ),
    Elements( Points( X, Y, Legend( 1 ) ), Smoother( X, Y, Legend( 2 ) ) ),
    Local Data Filter(
        Add Filter(
            columns( :age, :sex, :height ),
            Where( :age == {12, 13, 14} ),
            Where( :sex == "F" ),
            Where( :height >= 55 ),
            Display( :age, N Items( 6 ) )
        )
    )
);
New Window( "platform boxes",
    H List Box(
        Outline Box( "Report(platform)", Report( gb ) << Get Picture ),
        Outline Box( "platform << Get Container", (gb << Get Container) << Get Picture )
    )
);

Get Data Table

Syntax: obj << Get Data Table

Description: Returns a reference to the data table.


dt = Open( "$SAMPLE_DATA/Wine Sensory Data.jmp" );
dt << Multiple Factor Analysis(
    Product ID( :Vineyard ),
    Z( :Region ),
    MFA Blocks(
        {"Susan Fruity etc.", :Susan Fruity, :Susan Flowery, :Susan Spicy, :Susan Crispness},
        {"Florence Flowery etc.", :Florence Flowery, :Florence Crispness, :Florence Tannin,
        :Florence Savory, :Florence Lightness},
        {"Xavier Fruity etc.", :Xavier Fruity, :Xavier Spicy, :Xavier Crispness,
        :Xavier Alcohol, :Xavier Savory, :Xavier Lightness},
        {"Robert Fruity etc.", :Robert Fruity, :Robert Flowery, :Robert Spicy,
        :Robert Crispness, :Robert Tannin, :Robert Alcohol, :Robert Savory, :Robert Lightness
        },
        {"Paula Fruity etc.", :Paula Fruity, :Paula Flowery, :Paula Spicy, :Paula Crispness,
        :Paula Tannin, :Paula Savory},
        {"Monica Fruity etc.", :Monica Fruity, :Monica Flowery, :Monica Spicy, :Monica Tannin,
        :Monica Alcohol, :Monica Savory, :Monica Lightness},
        {"Frank Fruity etc.", :Frank Fruity, :Frank Flowery, :Frank Spicy, :Frank Crispness,
        :Frank Tannin, :Frank Alcohol, :Frank Savory, :Frank Lightness}
    )
);
t = obj << Get Datatable;
Show( N Rows( t ) );

Get Group Platform

Syntax: obj << Get Group Platform

Description: Return the Group Platform object if this platform is part of a Group. Otherwise, returns Empty().


dt = Open( "$SAMPLE_DATA/Big Class.jmp" );
biv = dt << Bivariate( Y( :weight ), X( :height ), By( :sex ) );
group = biv[1] << Get Group Platform;
Wait( 1 );
group << Layout( "Arrange in Tabs" );

Get Script

Syntax: obj << Get Script

Description: Creates a script (JSL) to produce this analysis and returns it as an expression.


dt = Open( "$SAMPLE_DATA/Wine Sensory Data.jmp" );
dt << Multiple Factor Analysis(
    Product ID( :Vineyard ),
    Z( :Region ),
    MFA Blocks(
        {"Susan Fruity etc.", :Susan Fruity, :Susan Flowery, :Susan Spicy, :Susan Crispness},
        {"Florence Flowery etc.", :Florence Flowery, :Florence Crispness, :Florence Tannin,
        :Florence Savory, :Florence Lightness},
        {"Xavier Fruity etc.", :Xavier Fruity, :Xavier Spicy, :Xavier Crispness,
        :Xavier Alcohol, :Xavier Savory, :Xavier Lightness},
        {"Robert Fruity etc.", :Robert Fruity, :Robert Flowery, :Robert Spicy,
        :Robert Crispness, :Robert Tannin, :Robert Alcohol, :Robert Savory, :Robert Lightness
        },
        {"Paula Fruity etc.", :Paula Fruity, :Paula Flowery, :Paula Spicy, :Paula Crispness,
        :Paula Tannin, :Paula Savory},
        {"Monica Fruity etc.", :Monica Fruity, :Monica Flowery, :Monica Spicy, :Monica Tannin,
        :Monica Alcohol, :Monica Savory, :Monica Lightness},
        {"Frank Fruity etc.", :Frank Fruity, :Frank Flowery, :Frank Spicy, :Frank Crispness,
        :Frank Tannin, :Frank Alcohol, :Frank Savory, :Frank Lightness}
    )
);
t = obj << Get Script;
Show( t );

Get Script With Data Table

Syntax: obj << Get Script With Data Table

Description: Creates a script(JSL) to produce this analysis specifically referencing this data table and returns it as an expression.


dt = Open( "$SAMPLE_DATA/Wine Sensory Data.jmp" );
dt << Multiple Factor Analysis(
    Product ID( :Vineyard ),
    Z( :Region ),
    MFA Blocks(
        {"Susan Fruity etc.", :Susan Fruity, :Susan Flowery, :Susan Spicy, :Susan Crispness},
        {"Florence Flowery etc.", :Florence Flowery, :Florence Crispness, :Florence Tannin,
        :Florence Savory, :Florence Lightness},
        {"Xavier Fruity etc.", :Xavier Fruity, :Xavier Spicy, :Xavier Crispness,
        :Xavier Alcohol, :Xavier Savory, :Xavier Lightness},
        {"Robert Fruity etc.", :Robert Fruity, :Robert Flowery, :Robert Spicy,
        :Robert Crispness, :Robert Tannin, :Robert Alcohol, :Robert Savory, :Robert Lightness
        },
        {"Paula Fruity etc.", :Paula Fruity, :Paula Flowery, :Paula Spicy, :Paula Crispness,
        :Paula Tannin, :Paula Savory},
        {"Monica Fruity etc.", :Monica Fruity, :Monica Flowery, :Monica Spicy, :Monica Tannin,
        :Monica Alcohol, :Monica Savory, :Monica Lightness},
        {"Frank Fruity etc.", :Frank Fruity, :Frank Flowery, :Frank Spicy, :Frank Crispness,
        :Frank Tannin, :Frank Alcohol, :Frank Savory, :Frank Lightness}
    )
);
t = obj << Get Script With Data Table;
Show( t );

Get Timing

Syntax: obj << Get Timing

Description: Times the platform launch.


dt = Open( "$SAMPLE_DATA/Wine Sensory Data.jmp" );
dt << Multiple Factor Analysis(
    Product ID( :Vineyard ),
    Z( :Region ),
    MFA Blocks(
        {"Susan Fruity etc.", :Susan Fruity, :Susan Flowery, :Susan Spicy, :Susan Crispness},
        {"Florence Flowery etc.", :Florence Flowery, :Florence Crispness, :Florence Tannin,
        :Florence Savory, :Florence Lightness},
        {"Xavier Fruity etc.", :Xavier Fruity, :Xavier Spicy, :Xavier Crispness,
        :Xavier Alcohol, :Xavier Savory, :Xavier Lightness},
        {"Robert Fruity etc.", :Robert Fruity, :Robert Flowery, :Robert Spicy,
        :Robert Crispness, :Robert Tannin, :Robert Alcohol, :Robert Savory, :Robert Lightness
        },
        {"Paula Fruity etc.", :Paula Fruity, :Paula Flowery, :Paula Spicy, :Paula Crispness,
        :Paula Tannin, :Paula Savory},
        {"Monica Fruity etc.", :Monica Fruity, :Monica Flowery, :Monica Spicy, :Monica Tannin,
        :Monica Alcohol, :Monica Savory, :Monica Lightness},
        {"Frank Fruity etc.", :Frank Fruity, :Frank Flowery, :Frank Spicy, :Frank Crispness,
        :Frank Tannin, :Frank Alcohol, :Frank Savory, :Frank Lightness}
    )
);
t = obj << Get Timing;
Show( t );

Get Web Support

Syntax: obj << Get Web Support

Description: Return a number indicating the level of Interactive HTML support for the display object. 1 means some or all elements are supported. 0 means no support.


dt = Open( "$SAMPLE_DATA/Big Class.jmp" );
obj = dt << Bivariate( Y( :Weight ), X( :Height ) );
s = obj << Get Web Support();
Show( s );

Get Where Expr

Syntax: obj << Get Where Expr

Description: Returns the Where expression for the data subset, if the platform was launched with By() or Where(). Otherwise, returns Empty()

JMP Version Added: 18


dt = Open( "$SAMPLE_DATA/Big Class.jmp" );
biv = dt << Bivariate( X( :height ), Y( :weight ), By( :sex ) );
biv2 = dt << Bivariate( X( :height ), Y( :weight ), Where( :age < 14 & :height > 60 ) );
Show( biv[1] << Get Where Expr, biv2 << Get Where Expr );

Ignore Platform Preferences

Syntax: Ignore Platform Preferences( state=0|1 )

Description: Ignores the current settings of the platform's preferences. The message is ignored when sent to the platform after creation.


dt = Open( "$SAMPLE_DATA/Big Class.jmp" );
dt << Bivariate(
    Ignore Platform Preferences( 1 ),
    Y( :height ),
    X( :weight ),
    Action( Distribution( Y( :height, :weight ), Histograms Only ) )
);

Local Data Filter

Syntax: obj << Local Data Filter

Description: To filter data to specific groups or ranges, but local to this platform


dt = Open( "$SAMPLE_DATA/Car Poll.jmp" );
dt << Distribution(
    Nominal Distribution( Column( :country ) ),
    Local Data Filter(
        Add Filter( columns( :sex ), Where( :sex == "Female" ) ),
        Mode( Show( 1 ), Include( 1 ) )
    )
);

New JSL Preset

Syntax: New JSL Preset( preset )

Description: For testing purposes, create a preset directly from a JSL expression. Like <<New Preset, it will return a Platform Preset that can be applied using <<Apply Preset. But it allows you to specify the full JSL expression for the preset to test outside of normal operation. You will get an Assert on apply if the platform names do not match, but that is expected.

JMP Version Added: 18


dt = Open( "$SAMPLE_DATA/Big Class.jmp" );
obj = dt << Oneway( Y( :Height ), X( :Age ) );
preset = obj << New JSL Preset( Oneway( Y( :A ), X( :B ), Each Pair( 1 ) ) );
Wait( 1 );
obj << Apply Preset( preset );

New Preset

Syntax: obj = New Preset()

Description: Create an anonymous preset representing the options and customizations applied to the object. This object can be passed to Apply Preset to copy the settings to another object of the same type.

JMP Version Added: 18


dt = Open( "$SAMPLE_DATA/Big Class.jmp" );
obj = dt << Oneway( Y( :height ), X( :sex ), t Test( 1 ) );
preset = obj << New Preset();

Paste Local Data Filter

Syntax: obj << Paste Local Data Filter

Description: Apply the local data filter from the clipboard to the current report.


dt = Open( "$SAMPLE_DATA/Cities.jmp" );
dist = Distribution( Continuous Distribution( Column( :POP ) ) );
filter = dist << Local Data Filter(
    Add Filter( columns( :Region ), Where( :Region == "MW" ) )
);
filter << Copy Local Data Filter;
dist2 = Distribution( Continuous Distribution( Column( :Lead ) ) );
Wait( 1 );
dist2 << Paste Local Data Filter;

Redo Analysis

Syntax: obj << Redo Analysis

Description: Rerun this same analysis in a new window. The analysis will be different if the data has changed.


dt = Open( "$SAMPLE_DATA/Wine Sensory Data.jmp" );
dt << Multiple Factor Analysis(
    Product ID( :Vineyard ),
    Z( :Region ),
    MFA Blocks(
        {"Susan Fruity etc.", :Susan Fruity, :Susan Flowery, :Susan Spicy, :Susan Crispness},
        {"Florence Flowery etc.", :Florence Flowery, :Florence Crispness, :Florence Tannin,
        :Florence Savory, :Florence Lightness},
        {"Xavier Fruity etc.", :Xavier Fruity, :Xavier Spicy, :Xavier Crispness,
        :Xavier Alcohol, :Xavier Savory, :Xavier Lightness},
        {"Robert Fruity etc.", :Robert Fruity, :Robert Flowery, :Robert Spicy,
        :Robert Crispness, :Robert Tannin, :Robert Alcohol, :Robert Savory, :Robert Lightness
        },
        {"Paula Fruity etc.", :Paula Fruity, :Paula Flowery, :Paula Spicy, :Paula Crispness,
        :Paula Tannin, :Paula Savory},
        {"Monica Fruity etc.", :Monica Fruity, :Monica Flowery, :Monica Spicy, :Monica Tannin,
        :Monica Alcohol, :Monica Savory, :Monica Lightness},
        {"Frank Fruity etc.", :Frank Fruity, :Frank Flowery, :Frank Spicy, :Frank Crispness,
        :Frank Tannin, :Frank Alcohol, :Frank Savory, :Frank Lightness}
    )
);
obj << Redo Analysis;

Redo ByGroup Analysis

Syntax: obj << Redo ByGroup Analysis

Description: Rerun this same analysis in a new window. The analysis will be different if the data has changed.


dt = Open( "$SAMPLE_DATA/Wine Sensory Data.jmp" );
dt << New Column( "_bycol",
    Character,
    Nominal,
    set values( Repeat( {"A", "B"}, N Rows( dt ) )[1 :: N Rows( dt )] )
);
dt << Multiple Factor Analysis(
    Product ID( :Vineyard ),
    Z( :Region ),
    MFA Blocks(
        {"Susan Fruity etc.", :Susan Fruity, :Susan Flowery, :Susan Spicy, :Susan Crispness},
        {"Florence Flowery etc.", :Florence Flowery, :Florence Crispness, :Florence Tannin,
        :Florence Savory, :Florence Lightness},
        {"Xavier Fruity etc.", :Xavier Fruity, :Xavier Spicy, :Xavier Crispness,
        :Xavier Alcohol, :Xavier Savory, :Xavier Lightness},
        {"Robert Fruity etc.", :Robert Fruity, :Robert Flowery, :Robert Spicy,
        :Robert Crispness, :Robert Tannin, :Robert Alcohol, :Robert Savory, :Robert Lightness
        },
        {"Paula Fruity etc.", :Paula Fruity, :Paula Flowery, :Paula Spicy, :Paula Crispness,
        :Paula Tannin, :Paula Savory},
        {"Monica Fruity etc.", :Monica Fruity, :Monica Flowery, :Monica Spicy, :Monica Tannin,
        :Monica Alcohol, :Monica Savory, :Monica Lightness},
        {"Frank Fruity etc.", :Frank Fruity, :Frank Flowery, :Frank Spicy, :Frank Crispness,
        :Frank Tannin, :Frank Alcohol, :Frank Savory, :Frank Lightness}
    ),
    By( _bycol )
);
obj[1] << Redo ByGroup Analysis;

Relaunch Analysis

Syntax: obj << Relaunch Analysis

Description: Opens the platform launch window and recalls the settings that were used to create the report.


dt = Open( "$SAMPLE_DATA/Wine Sensory Data.jmp" );
dt << Multiple Factor Analysis(
    Product ID( :Vineyard ),
    Z( :Region ),
    MFA Blocks(
        {"Susan Fruity etc.", :Susan Fruity, :Susan Flowery, :Susan Spicy, :Susan Crispness},
        {"Florence Flowery etc.", :Florence Flowery, :Florence Crispness, :Florence Tannin,
        :Florence Savory, :Florence Lightness},
        {"Xavier Fruity etc.", :Xavier Fruity, :Xavier Spicy, :Xavier Crispness,
        :Xavier Alcohol, :Xavier Savory, :Xavier Lightness},
        {"Robert Fruity etc.", :Robert Fruity, :Robert Flowery, :Robert Spicy,
        :Robert Crispness, :Robert Tannin, :Robert Alcohol, :Robert Savory, :Robert Lightness
        },
        {"Paula Fruity etc.", :Paula Fruity, :Paula Flowery, :Paula Spicy, :Paula Crispness,
        :Paula Tannin, :Paula Savory},
        {"Monica Fruity etc.", :Monica Fruity, :Monica Flowery, :Monica Spicy, :Monica Tannin,
        :Monica Alcohol, :Monica Savory, :Monica Lightness},
        {"Frank Fruity etc.", :Frank Fruity, :Frank Flowery, :Frank Spicy, :Frank Crispness,
        :Frank Tannin, :Frank Alcohol, :Frank Savory, :Frank Lightness}
    )
);
obj << Relaunch Analysis;

Relaunch ByGroup

Syntax: obj << Relaunch ByGroup

Description: Opens the platform launch window and recalls the settings that were used to create the report.


dt = Open( "$SAMPLE_DATA/Wine Sensory Data.jmp" );
dt << New Column( "_bycol",
    Character,
    Nominal,
    set values( Repeat( {"A", "B"}, N Rows( dt ) )[1 :: N Rows( dt )] )
);
dt << Multiple Factor Analysis(
    Product ID( :Vineyard ),
    Z( :Region ),
    MFA Blocks(
        {"Susan Fruity etc.", :Susan Fruity, :Susan Flowery, :Susan Spicy, :Susan Crispness},
        {"Florence Flowery etc.", :Florence Flowery, :Florence Crispness, :Florence Tannin,
        :Florence Savory, :Florence Lightness},
        {"Xavier Fruity etc.", :Xavier Fruity, :Xavier Spicy, :Xavier Crispness,
        :Xavier Alcohol, :Xavier Savory, :Xavier Lightness},
        {"Robert Fruity etc.", :Robert Fruity, :Robert Flowery, :Robert Spicy,
        :Robert Crispness, :Robert Tannin, :Robert Alcohol, :Robert Savory, :Robert Lightness
        },
        {"Paula Fruity etc.", :Paula Fruity, :Paula Flowery, :Paula Spicy, :Paula Crispness,
        :Paula Tannin, :Paula Savory},
        {"Monica Fruity etc.", :Monica Fruity, :Monica Flowery, :Monica Spicy, :Monica Tannin,
        :Monica Alcohol, :Monica Savory, :Monica Lightness},
        {"Frank Fruity etc.", :Frank Fruity, :Frank Flowery, :Frank Spicy, :Frank Crispness,
        :Frank Tannin, :Frank Alcohol, :Frank Savory, :Frank Lightness}
    ),
    By( _bycol )
);
obj[1] << Relaunch ByGroup;

Remove Column Switcher

Syntax: obj << Remove Column Switcher

Description: Removes the most recent Column Switcher that has been added to the platform.


dt = Open( "$SAMPLE_DATA/Car Poll.jmp" );
obj = dt << Contingency( Y( :size ), X( :marital status ) );
ColumnSwitcherObject = obj << Column Switcher(
    :marital status,
    {:sex, :country, :marital status}
);
Wait( 2 );
obj << Remove Column Switcher;

Remove Local Data Filter

Syntax: obj << Remove Local Data Filter

Description: If a local data filter has been created, this removes it and restores the platform to use all the data in the data table directly


dt = Open( "$SAMPLE_DATA/Car Poll.jmp" );
dist = dt << Distribution(
    Nominal Distribution( Column( :country ) ),
    Local Data Filter(
        Add Filter( columns( :sex ), Where( :sex == "Female" ) ),
        Mode( Show( 1 ), Include( 1 ) )
    )
);
Wait( 2 );
dist << remove local data filter;

Render Preset

Syntax: Render Preset( preset )

Description: For testing purposes, show the platform rerun script that would be used when applying a platform preset to the platform in the log. No changes are made to the platform.

JMP Version Added: 18


dt = Open( "$SAMPLE_DATA/Big Class.jmp" );
obj = dt << Oneway( Y( :Height ), X( :Age ) );
obj << Render Preset( Expr( Oneway( Y( :A ), X( :B ), Each Pair( 1 ) ) ) );

Report

Syntax: obj << Report;Report( obj )

Description: Returns a reference to the report object.


dt = Open( "$SAMPLE_DATA/Wine Sensory Data.jmp" );
dt << Multiple Factor Analysis(
    Product ID( :Vineyard ),
    Z( :Region ),
    MFA Blocks(
        {"Susan Fruity etc.", :Susan Fruity, :Susan Flowery, :Susan Spicy, :Susan Crispness},
        {"Florence Flowery etc.", :Florence Flowery, :Florence Crispness, :Florence Tannin,
        :Florence Savory, :Florence Lightness},
        {"Xavier Fruity etc.", :Xavier Fruity, :Xavier Spicy, :Xavier Crispness,
        :Xavier Alcohol, :Xavier Savory, :Xavier Lightness},
        {"Robert Fruity etc.", :Robert Fruity, :Robert Flowery, :Robert Spicy,
        :Robert Crispness, :Robert Tannin, :Robert Alcohol, :Robert Savory, :Robert Lightness
        },
        {"Paula Fruity etc.", :Paula Fruity, :Paula Flowery, :Paula Spicy, :Paula Crispness,
        :Paula Tannin, :Paula Savory},
        {"Monica Fruity etc.", :Monica Fruity, :Monica Flowery, :Monica Spicy, :Monica Tannin,
        :Monica Alcohol, :Monica Savory, :Monica Lightness},
        {"Frank Fruity etc.", :Frank Fruity, :Frank Flowery, :Frank Spicy, :Frank Crispness,
        :Frank Tannin, :Frank Alcohol, :Frank Savory, :Frank Lightness}
    )
);
r = obj << Report;
t = r[Outline Box( 1 )] << Get Title;
Show( t );

Report View

Syntax: obj << Report View( "Full"|"Summary" )

Description: The report view determines the level of detail visible in a platform report. Full shows all of the detail, while Summary shows only select content, dependent on the platform. For customized behavior, display boxes support a <<Set Summary Behavior message.


dt = Open( "$SAMPLE_DATA/Wine Sensory Data.jmp" );
dt << Multiple Factor Analysis(
    Product ID( :Vineyard ),
    Z( :Region ),
    MFA Blocks(
        {"Susan Fruity etc.", :Susan Fruity, :Susan Flowery, :Susan Spicy, :Susan Crispness},
        {"Florence Flowery etc.", :Florence Flowery, :Florence Crispness, :Florence Tannin,
        :Florence Savory, :Florence Lightness},
        {"Xavier Fruity etc.", :Xavier Fruity, :Xavier Spicy, :Xavier Crispness,
        :Xavier Alcohol, :Xavier Savory, :Xavier Lightness},
        {"Robert Fruity etc.", :Robert Fruity, :Robert Flowery, :Robert Spicy,
        :Robert Crispness, :Robert Tannin, :Robert Alcohol, :Robert Savory, :Robert Lightness
        },
        {"Paula Fruity etc.", :Paula Fruity, :Paula Flowery, :Paula Spicy, :Paula Crispness,
        :Paula Tannin, :Paula Savory},
        {"Monica Fruity etc.", :Monica Fruity, :Monica Flowery, :Monica Spicy, :Monica Tannin,
        :Monica Alcohol, :Monica Savory, :Monica Lightness},
        {"Frank Fruity etc.", :Frank Fruity, :Frank Flowery, :Frank Spicy, :Frank Crispness,
        :Frank Tannin, :Frank Alcohol, :Frank Savory, :Frank Lightness}
    )
);
obj << Report View( "Summary" );

Save ByGroup Script to Data Table

Syntax: Save ByGroup Script to Data Table( <name>, < <<Append Suffix(0|1)>, < <<Prompt(0|1)>, < <<Replace(0|1)> );

Description: Creates a JSL script to produce this analysis, and save it as a table property in the data table. You can specify a name for the script. The Append Suffix option appends a numeric suffix to the script name, which differentiates the script from an existing script with the same name. The Prompt option prompts the user to specify a script name. The Replace option replaces an existing script with the same name.


dt = Open( "$SAMPLE_DATA/Wine Sensory Data.jmp" );
dt << New Column( "_bycol",
    Character,
    Nominal,
    set values( Repeat( {"A", "B"}, N Rows( dt ) )[1 :: N Rows( dt )] )
);
dt << Multiple Factor Analysis(
    Product ID( :Vineyard ),
    Z( :Region ),
    MFA Blocks(
        {"Susan Fruity etc.", :Susan Fruity, :Susan Flowery, :Susan Spicy, :Susan Crispness},
        {"Florence Flowery etc.", :Florence Flowery, :Florence Crispness, :Florence Tannin,
        :Florence Savory, :Florence Lightness},
        {"Xavier Fruity etc.", :Xavier Fruity, :Xavier Spicy, :Xavier Crispness,
        :Xavier Alcohol, :Xavier Savory, :Xavier Lightness},
        {"Robert Fruity etc.", :Robert Fruity, :Robert Flowery, :Robert Spicy,
        :Robert Crispness, :Robert Tannin, :Robert Alcohol, :Robert Savory, :Robert Lightness
        },
        {"Paula Fruity etc.", :Paula Fruity, :Paula Flowery, :Paula Spicy, :Paula Crispness,
        :Paula Tannin, :Paula Savory},
        {"Monica Fruity etc.", :Monica Fruity, :Monica Flowery, :Monica Spicy, :Monica Tannin,
        :Monica Alcohol, :Monica Savory, :Monica Lightness},
        {"Frank Fruity etc.", :Frank Fruity, :Frank Flowery, :Frank Spicy, :Frank Crispness,
        :Frank Tannin, :Frank Alcohol, :Frank Savory, :Frank Lightness}
    ),
    By( _bycol )
);
obj[1] << Save ByGroup Script to Data Table;

Save ByGroup Script to Journal

Syntax: obj << Save ByGroup Script to Journal

Description: Create a JSL script to produce this analysis, and add a Button to the journal containing this script.


dt = Open( "$SAMPLE_DATA/Wine Sensory Data.jmp" );
dt << New Column( "_bycol",
    Character,
    Nominal,
    set values( Repeat( {"A", "B"}, N Rows( dt ) )[1 :: N Rows( dt )] )
);
dt << Multiple Factor Analysis(
    Product ID( :Vineyard ),
    Z( :Region ),
    MFA Blocks(
        {"Susan Fruity etc.", :Susan Fruity, :Susan Flowery, :Susan Spicy, :Susan Crispness},
        {"Florence Flowery etc.", :Florence Flowery, :Florence Crispness, :Florence Tannin,
        :Florence Savory, :Florence Lightness},
        {"Xavier Fruity etc.", :Xavier Fruity, :Xavier Spicy, :Xavier Crispness,
        :Xavier Alcohol, :Xavier Savory, :Xavier Lightness},
        {"Robert Fruity etc.", :Robert Fruity, :Robert Flowery, :Robert Spicy,
        :Robert Crispness, :Robert Tannin, :Robert Alcohol, :Robert Savory, :Robert Lightness
        },
        {"Paula Fruity etc.", :Paula Fruity, :Paula Flowery, :Paula Spicy, :Paula Crispness,
        :Paula Tannin, :Paula Savory},
        {"Monica Fruity etc.", :Monica Fruity, :Monica Flowery, :Monica Spicy, :Monica Tannin,
        :Monica Alcohol, :Monica Savory, :Monica Lightness},
        {"Frank Fruity etc.", :Frank Fruity, :Frank Flowery, :Frank Spicy, :Frank Crispness,
        :Frank Tannin, :Frank Alcohol, :Frank Savory, :Frank Lightness}
    ),
    By( _bycol )
);
obj[1] << Save ByGroup Script to Journal;

Save ByGroup Script to Script Window

Syntax: obj << Save ByGroup Script to Script Window

Description: Create a JSL script to produce this analysis, and append it to the current Script text window.


dt = Open( "$SAMPLE_DATA/Wine Sensory Data.jmp" );
dt << New Column( "_bycol",
    Character,
    Nominal,
    set values( Repeat( {"A", "B"}, N Rows( dt ) )[1 :: N Rows( dt )] )
);
dt << Multiple Factor Analysis(
    Product ID( :Vineyard ),
    Z( :Region ),
    MFA Blocks(
        {"Susan Fruity etc.", :Susan Fruity, :Susan Flowery, :Susan Spicy, :Susan Crispness},
        {"Florence Flowery etc.", :Florence Flowery, :Florence Crispness, :Florence Tannin,
        :Florence Savory, :Florence Lightness},
        {"Xavier Fruity etc.", :Xavier Fruity, :Xavier Spicy, :Xavier Crispness,
        :Xavier Alcohol, :Xavier Savory, :Xavier Lightness},
        {"Robert Fruity etc.", :Robert Fruity, :Robert Flowery, :Robert Spicy,
        :Robert Crispness, :Robert Tannin, :Robert Alcohol, :Robert Savory, :Robert Lightness
        },
        {"Paula Fruity etc.", :Paula Fruity, :Paula Flowery, :Paula Spicy, :Paula Crispness,
        :Paula Tannin, :Paula Savory},
        {"Monica Fruity etc.", :Monica Fruity, :Monica Flowery, :Monica Spicy, :Monica Tannin,
        :Monica Alcohol, :Monica Savory, :Monica Lightness},
        {"Frank Fruity etc.", :Frank Fruity, :Frank Flowery, :Frank Spicy, :Frank Crispness,
        :Frank Tannin, :Frank Alcohol, :Frank Savory, :Frank Lightness}
    ),
    By( _bycol )
);
obj[1] << Save ByGroup Script to Script Window;

Save Script for All Objects

Syntax: obj << Save Script for All Objects

Description: Creates a script for all report objects in the window and appends it to the current Script window. This option is useful when you have multiple reports in the window.


dt = Open( "$SAMPLE_DATA/Wine Sensory Data.jmp" );
dt << Multiple Factor Analysis(
    Product ID( :Vineyard ),
    Z( :Region ),
    MFA Blocks(
        {"Susan Fruity etc.", :Susan Fruity, :Susan Flowery, :Susan Spicy, :Susan Crispness},
        {"Florence Flowery etc.", :Florence Flowery, :Florence Crispness, :Florence Tannin,
        :Florence Savory, :Florence Lightness},
        {"Xavier Fruity etc.", :Xavier Fruity, :Xavier Spicy, :Xavier Crispness,
        :Xavier Alcohol, :Xavier Savory, :Xavier Lightness},
        {"Robert Fruity etc.", :Robert Fruity, :Robert Flowery, :Robert Spicy,
        :Robert Crispness, :Robert Tannin, :Robert Alcohol, :Robert Savory, :Robert Lightness
        },
        {"Paula Fruity etc.", :Paula Fruity, :Paula Flowery, :Paula Spicy, :Paula Crispness,
        :Paula Tannin, :Paula Savory},
        {"Monica Fruity etc.", :Monica Fruity, :Monica Flowery, :Monica Spicy, :Monica Tannin,
        :Monica Alcohol, :Monica Savory, :Monica Lightness},
        {"Frank Fruity etc.", :Frank Fruity, :Frank Flowery, :Frank Spicy, :Frank Crispness,
        :Frank Tannin, :Frank Alcohol, :Frank Savory, :Frank Lightness}
    )
);
obj << Save Script for All Objects;

Save Script for All Objects To Data Table

Syntax: obj << Save Script for All Objects To Data Table( <name> )

Description: Saves a script for all report objects to the current data table. This option is useful when you have multiple reports in the window. The script is named after the first platform unless you specify the script name in quotes.

Example 1


dt = Open( "$SAMPLE_DATA/Wine Sensory Data.jmp" );
dt << New Column( "_bycol",
    Character,
    Nominal,
    set values( Repeat( {"A", "B"}, N Rows( dt ) )[1 :: N Rows( dt )] )
);
dt << Multiple Factor Analysis(
    Product ID( :Vineyard ),
    Z( :Region ),
    MFA Blocks(
        {"Susan Fruity etc.", :Susan Fruity, :Susan Flowery, :Susan Spicy, :Susan Crispness},
        {"Florence Flowery etc.", :Florence Flowery, :Florence Crispness, :Florence Tannin,
        :Florence Savory, :Florence Lightness},
        {"Xavier Fruity etc.", :Xavier Fruity, :Xavier Spicy, :Xavier Crispness,
        :Xavier Alcohol, :Xavier Savory, :Xavier Lightness},
        {"Robert Fruity etc.", :Robert Fruity, :Robert Flowery, :Robert Spicy,
        :Robert Crispness, :Robert Tannin, :Robert Alcohol, :Robert Savory, :Robert Lightness
        },
        {"Paula Fruity etc.", :Paula Fruity, :Paula Flowery, :Paula Spicy, :Paula Crispness,
        :Paula Tannin, :Paula Savory},
        {"Monica Fruity etc.", :Monica Fruity, :Monica Flowery, :Monica Spicy, :Monica Tannin,
        :Monica Alcohol, :Monica Savory, :Monica Lightness},
        {"Frank Fruity etc.", :Frank Fruity, :Frank Flowery, :Frank Spicy, :Frank Crispness,
        :Frank Tannin, :Frank Alcohol, :Frank Savory, :Frank Lightness}
    ),
    By( _bycol )
);
obj[1] << Save Script for All Objects To Data Table;

Example 2


dt = Open( "$SAMPLE_DATA/Wine Sensory Data.jmp" );
dt << New Column( "_bycol",
    Character,
    Nominal,
    set values( Repeat( {"A", "B"}, N Rows( dt ) )[1 :: N Rows( dt )] )
);
dt << Multiple Factor Analysis(
    Product ID( :Vineyard ),
    Z( :Region ),
    MFA Blocks(
        {"Susan Fruity etc.", :Susan Fruity, :Susan Flowery, :Susan Spicy, :Susan Crispness},
        {"Florence Flowery etc.", :Florence Flowery, :Florence Crispness, :Florence Tannin,
        :Florence Savory, :Florence Lightness},
        {"Xavier Fruity etc.", :Xavier Fruity, :Xavier Spicy, :Xavier Crispness,
        :Xavier Alcohol, :Xavier Savory, :Xavier Lightness},
        {"Robert Fruity etc.", :Robert Fruity, :Robert Flowery, :Robert Spicy,
        :Robert Crispness, :Robert Tannin, :Robert Alcohol, :Robert Savory, :Robert Lightness
        },
        {"Paula Fruity etc.", :Paula Fruity, :Paula Flowery, :Paula Spicy, :Paula Crispness,
        :Paula Tannin, :Paula Savory},
        {"Monica Fruity etc.", :Monica Fruity, :Monica Flowery, :Monica Spicy, :Monica Tannin,
        :Monica Alcohol, :Monica Savory, :Monica Lightness},
        {"Frank Fruity etc.", :Frank Fruity, :Frank Flowery, :Frank Spicy, :Frank Crispness,
        :Frank Tannin, :Frank Alcohol, :Frank Savory, :Frank Lightness}
    ),
    By( _bycol )
);
obj[1] << Save Script for All Objects To Data Table( "My Script" );

Save Script to Data Table

Syntax: Save Script to Data Table( <name>, < <<Prompt(0|1)>, < <<Replace(0|1)> );

Description: Create a JSL script to produce this analysis, and save it as a table property in the data table.


dt = Open( "$SAMPLE_DATA/Wine Sensory Data.jmp" );
dt << Multiple Factor Analysis(
    Product ID( :Vineyard ),
    Z( :Region ),
    MFA Blocks(
        {"Susan Fruity etc.", :Susan Fruity, :Susan Flowery, :Susan Spicy, :Susan Crispness},
        {"Florence Flowery etc.", :Florence Flowery, :Florence Crispness, :Florence Tannin,
        :Florence Savory, :Florence Lightness},
        {"Xavier Fruity etc.", :Xavier Fruity, :Xavier Spicy, :Xavier Crispness,
        :Xavier Alcohol, :Xavier Savory, :Xavier Lightness},
        {"Robert Fruity etc.", :Robert Fruity, :Robert Flowery, :Robert Spicy,
        :Robert Crispness, :Robert Tannin, :Robert Alcohol, :Robert Savory, :Robert Lightness
        },
        {"Paula Fruity etc.", :Paula Fruity, :Paula Flowery, :Paula Spicy, :Paula Crispness,
        :Paula Tannin, :Paula Savory},
        {"Monica Fruity etc.", :Monica Fruity, :Monica Flowery, :Monica Spicy, :Monica Tannin,
        :Monica Alcohol, :Monica Savory, :Monica Lightness},
        {"Frank Fruity etc.", :Frank Fruity, :Frank Flowery, :Frank Spicy, :Frank Crispness,
        :Frank Tannin, :Frank Alcohol, :Frank Savory, :Frank Lightness}
    )
);
obj << Save Script to Data Table( "My Analysis", <<Prompt( 0 ), <<Replace( 0 ) );

Save Script to Journal

Syntax: obj << Save Script to Journal

Description: Create a JSL script to produce this analysis, and add a Button to the journal containing this script.


dt = Open( "$SAMPLE_DATA/Wine Sensory Data.jmp" );
dt << Multiple Factor Analysis(
    Product ID( :Vineyard ),
    Z( :Region ),
    MFA Blocks(
        {"Susan Fruity etc.", :Susan Fruity, :Susan Flowery, :Susan Spicy, :Susan Crispness},
        {"Florence Flowery etc.", :Florence Flowery, :Florence Crispness, :Florence Tannin,
        :Florence Savory, :Florence Lightness},
        {"Xavier Fruity etc.", :Xavier Fruity, :Xavier Spicy, :Xavier Crispness,
        :Xavier Alcohol, :Xavier Savory, :Xavier Lightness},
        {"Robert Fruity etc.", :Robert Fruity, :Robert Flowery, :Robert Spicy,
        :Robert Crispness, :Robert Tannin, :Robert Alcohol, :Robert Savory, :Robert Lightness
        },
        {"Paula Fruity etc.", :Paula Fruity, :Paula Flowery, :Paula Spicy, :Paula Crispness,
        :Paula Tannin, :Paula Savory},
        {"Monica Fruity etc.", :Monica Fruity, :Monica Flowery, :Monica Spicy, :Monica Tannin,
        :Monica Alcohol, :Monica Savory, :Monica Lightness},
        {"Frank Fruity etc.", :Frank Fruity, :Frank Flowery, :Frank Spicy, :Frank Crispness,
        :Frank Tannin, :Frank Alcohol, :Frank Savory, :Frank Lightness}
    )
);
obj << Save Script to Journal;

Save Script to Report

Syntax: obj << Save Script to Report

Description: Create a JSL script to produce this analysis, and show it in the report itself. Useful to preserve a printed record of what was done.


dt = Open( "$SAMPLE_DATA/Wine Sensory Data.jmp" );
dt << Multiple Factor Analysis(
    Product ID( :Vineyard ),
    Z( :Region ),
    MFA Blocks(
        {"Susan Fruity etc.", :Susan Fruity, :Susan Flowery, :Susan Spicy, :Susan Crispness},
        {"Florence Flowery etc.", :Florence Flowery, :Florence Crispness, :Florence Tannin,
        :Florence Savory, :Florence Lightness},
        {"Xavier Fruity etc.", :Xavier Fruity, :Xavier Spicy, :Xavier Crispness,
        :Xavier Alcohol, :Xavier Savory, :Xavier Lightness},
        {"Robert Fruity etc.", :Robert Fruity, :Robert Flowery, :Robert Spicy,
        :Robert Crispness, :Robert Tannin, :Robert Alcohol, :Robert Savory, :Robert Lightness
        },
        {"Paula Fruity etc.", :Paula Fruity, :Paula Flowery, :Paula Spicy, :Paula Crispness,
        :Paula Tannin, :Paula Savory},
        {"Monica Fruity etc.", :Monica Fruity, :Monica Flowery, :Monica Spicy, :Monica Tannin,
        :Monica Alcohol, :Monica Savory, :Monica Lightness},
        {"Frank Fruity etc.", :Frank Fruity, :Frank Flowery, :Frank Spicy, :Frank Crispness,
        :Frank Tannin, :Frank Alcohol, :Frank Savory, :Frank Lightness}
    )
);
obj << Save Script to Report;

Save Script to Script Window

Syntax: obj << Save Script to Script Window

Description: Create a JSL script to produce this analysis, and append it to the current Script text window.


dt = Open( "$SAMPLE_DATA/Wine Sensory Data.jmp" );
dt << Multiple Factor Analysis(
    Product ID( :Vineyard ),
    Z( :Region ),
    MFA Blocks(
        {"Susan Fruity etc.", :Susan Fruity, :Susan Flowery, :Susan Spicy, :Susan Crispness},
        {"Florence Flowery etc.", :Florence Flowery, :Florence Crispness, :Florence Tannin,
        :Florence Savory, :Florence Lightness},
        {"Xavier Fruity etc.", :Xavier Fruity, :Xavier Spicy, :Xavier Crispness,
        :Xavier Alcohol, :Xavier Savory, :Xavier Lightness},
        {"Robert Fruity etc.", :Robert Fruity, :Robert Flowery, :Robert Spicy,
        :Robert Crispness, :Robert Tannin, :Robert Alcohol, :Robert Savory, :Robert Lightness
        },
        {"Paula Fruity etc.", :Paula Fruity, :Paula Flowery, :Paula Spicy, :Paula Crispness,
        :Paula Tannin, :Paula Savory},
        {"Monica Fruity etc.", :Monica Fruity, :Monica Flowery, :Monica Spicy, :Monica Tannin,
        :Monica Alcohol, :Monica Savory, :Monica Lightness},
        {"Frank Fruity etc.", :Frank Fruity, :Frank Flowery, :Frank Spicy, :Frank Crispness,
        :Frank Tannin, :Frank Alcohol, :Frank Savory, :Frank Lightness}
    )
);
obj << Save Script to Script Window;

SendToByGroup

Syntax: SendToByGroup( {":Column == level"}, command );

Description: Sends platform commands or display customization commands to each level of a by-group.


dt = Open( "$SAMPLE_DATA/Big Class.jmp" );
dt << Distribution(
    By( :Sex ),
    SendToByGroup(
        {:sex == "F"},
        Continuous Distribution( Column( :weight ), Normal Quantile Plot( 1 ) )
    ),
    SendToByGroup( {:sex == "M"}, Continuous Distribution( Column( :weight ) ) )
);

SendToEmbeddedScriptable

Syntax: SendToEmbeddedScriptable( Dispatch( "Outline name", "Element name", command );

Description: SendToEmbeddedScriptable restores settings of embedded scriptable objects.



dt = Open( "$SAMPLE_DATA/Reliability/Fan.jmp" );
dt << Life Distribution(
    Y( :Time ),
    Censor( :Censor ),
    Censor Code( 1 ),
    <<Fit Weibull,
    SendToEmbeddedScriptable(
        Dispatch(
            {"Statistics", "Parametric Estimate - Weibull", "Profilers", "Density Profiler"},
            {1, Confidence Intervals( 0 ), Term Value( Time( 6000, Lock( 0 ), Show( 1 ) ) )}
        )
    )
);

SendToReport

Syntax: SendToReport( Dispatch( "Outline name", "Element name", Element type, command );

Description: Send To Report is used in tandem with the Dispatch command to customize the appearance of a report.


dt = Open( "$SAMPLE_DATA/Big Class.jmp" );
dt << Distribution(
    Nominal Distribution( Column( :age ) ),
    Continuous Distribution( Column( :weight ) ),
    SendToReport( Dispatch( "age", "Distrib Nom Hist", FrameBox, {Frame Size( 178, 318 )} ) )
);

Sync to Data Table Changes

Syntax: obj << Sync to Data Table Changes

Description: Sync with the exclude and data changes that have been made.


dt = Open( "$SAMPLE_DATA/Cities.jmp" );
dist = Distribution( Continuous Distribution( Column( :POP ) ) );
Wait( 1 );
dt << Delete Rows( dt << Get Rows Where( :Region == "W" ) );
dist << Sync To Data Table Changes;

Title

Syntax: obj << Title( "new title" )

Description: Sets the title of the platform.


dt = Open( "$SAMPLE_DATA/Wine Sensory Data.jmp" );
dt << Multiple Factor Analysis(
    Product ID( :Vineyard ),
    Z( :Region ),
    MFA Blocks(
        {"Susan Fruity etc.", :Susan Fruity, :Susan Flowery, :Susan Spicy, :Susan Crispness},
        {"Florence Flowery etc.", :Florence Flowery, :Florence Crispness, :Florence Tannin,
        :Florence Savory, :Florence Lightness},
        {"Xavier Fruity etc.", :Xavier Fruity, :Xavier Spicy, :Xavier Crispness,
        :Xavier Alcohol, :Xavier Savory, :Xavier Lightness},
        {"Robert Fruity etc.", :Robert Fruity, :Robert Flowery, :Robert Spicy,
        :Robert Crispness, :Robert Tannin, :Robert Alcohol, :Robert Savory, :Robert Lightness
        },
        {"Paula Fruity etc.", :Paula Fruity, :Paula Flowery, :Paula Spicy, :Paula Crispness,
        :Paula Tannin, :Paula Savory},
        {"Monica Fruity etc.", :Monica Fruity, :Monica Flowery, :Monica Spicy, :Monica Tannin,
        :Monica Alcohol, :Monica Savory, :Monica Lightness},
        {"Frank Fruity etc.", :Frank Fruity, :Frank Flowery, :Frank Spicy, :Frank Crispness,
        :Frank Tannin, :Frank Alcohol, :Frank Savory, :Frank Lightness}
    )
);
obj << Title( "My Platform" );

Top Report

Syntax: obj << Top Report

Description: Returns a reference to the root node in the report.


dt = Open( "$SAMPLE_DATA/Wine Sensory Data.jmp" );
dt << Multiple Factor Analysis(
    Product ID( :Vineyard ),
    Z( :Region ),
    MFA Blocks(
        {"Susan Fruity etc.", :Susan Fruity, :Susan Flowery, :Susan Spicy, :Susan Crispness},
        {"Florence Flowery etc.", :Florence Flowery, :Florence Crispness, :Florence Tannin,
        :Florence Savory, :Florence Lightness},
        {"Xavier Fruity etc.", :Xavier Fruity, :Xavier Spicy, :Xavier Crispness,
        :Xavier Alcohol, :Xavier Savory, :Xavier Lightness},
        {"Robert Fruity etc.", :Robert Fruity, :Robert Flowery, :Robert Spicy,
        :Robert Crispness, :Robert Tannin, :Robert Alcohol, :Robert Savory, :Robert Lightness
        },
        {"Paula Fruity etc.", :Paula Fruity, :Paula Flowery, :Paula Spicy, :Paula Crispness,
        :Paula Tannin, :Paula Savory},
        {"Monica Fruity etc.", :Monica Fruity, :Monica Flowery, :Monica Spicy, :Monica Tannin,
        :Monica Alcohol, :Monica Savory, :Monica Lightness},
        {"Frank Fruity etc.", :Frank Fruity, :Frank Flowery, :Frank Spicy, :Frank Crispness,
        :Frank Tannin, :Frank Alcohol, :Frank Savory, :Frank Lightness}
    )
);
r = obj << Top Report;
t = r[Outline Box( 1 )] << Get Title;
Show( t );

Transform Column

Syntax: obj = <Platform>(... Transform Column(<name>, Formula(<expression>), [Random Seed(<n>)], [Numeric|Character|Expression], [Continuous|Nominal|Ordinal|Unstructured Text], [column properties]) ...)

Description: Create a transform column in the local context of an object, usually a platform. The transform column is active only for the lifetime of the platform.

JMP Version Added: 16


dt = Open( "$SAMPLE_DATA/Big Class.jmp" );
dt << Distribution(
    Transform Column( "age^2", Format( "Fixed Dec", 5, 0 ), Formula( :age * :age ) ),
    Continuous Distribution( Column( :"age^2"n ) )
);

View Web XML

Syntax: obj << View Web XML

Description: Returns the XML code that is used to create the interactive HTML report.


dt = Open( "$SAMPLE_DATA/Big Class.jmp" );
obj = dt << Bivariate( Y( :Weight ), X( :Height ) );
xml = obj << View Web XML;

Window View

Syntax: obj = Multiple Factor Analysis(...Window View( "Visible"|"Invisible"|"Private" )...)

Description: Set the type of the window to be created for the report. By default a Visible report window will be created. An Invisible window will not appear on screen, but is discoverable by functions such as Window(). A Private window responds to most window messages but is not discoverable and must be addressed through the report object


dt = Open( "$SAMPLE_DATA/Big Class.jmp" );
biv = dt << Bivariate( Window View( "Private" ), Y( :weight ), X( :height ), Fit Line );
eqn = Report( biv )["Linear Fit", Text Edit Box( 1 )] << Get Text;
biv << Close Window;
New Window( "Bivariate Equation",
    Outline Box( "Big Class Linear Fit", Text Box( eqn, <<Set Base Font( "Title" ) ) )
);