Fit Model

More examples for this topic using the sample data files provided with JMP

Build a gaussian process model


// Open data table
dt = Open("$Sample_Data/2D Gaussian Process Example.jmp");
// Model
Gaussian Process(
    Y( :Y ),
    X( :X1, :X2 )
);

Fit a standard least squares model using frequency


// Open data table
dt = Open("$Sample_Data/Bacteria.jmp");
// Fit Model Report
Fit Model(
    Freq( :Relative Sizes ),
    Y( :Group Means ),
    Effects( :Group ),
    Personality(
        "Standard Least Squares"
    ),
    Emphasis( "Minimal Report" ),
    Run(
        :Group Means << {{:Group << {}}}
    )
);

Generate a standard least squares model with a prediction profiler, a normal plot and a pareto plot of estimates


// Open data table
dt = Open("$Sample_Data/Bicycle.jmp");
// Fit Model
Fit Model(
    Y( :Y ),
    Effects(
        :HBars, :Dynamo, :Seat, :Tires,
        :Gear, :Raincoat, :Brkfast
    ),
    Personality(
        "Standard Least Squares"
    ),
    Run(
        Profiler( 1 ),
        Y << {Normal Plot( 1 ),
        Pareto Plot( 1 )}
    )
);

Fit a logistic regression model


// Open data table
dt = Open("$Sample_Data/Big Class.jmp");
// Logistic
Logistic( Y( :age ), X( :weight ) );

Generate a standard least squares model


// Open data table
dt = Open("$Sample_Data/Big Class.jmp");
// Fit Model
Fit Model(
    Y( :weight ),
    Effects( :age, :sex, :height ),
    Personality(
        "Standard Least Squares"
    ),
    Run(
        :weight <<
        {Plot Actual by Predicted( 1 ),
        Plot Residual by Predicted( 1 ),
        Plot Effect Leverage( 1 )}
    )
);

Fit a manova model


// Open data table
dt = Open("$Sample_Data/Blood Pressure.jmp");
// Fit Model
Fit Model(
    Y(
        :BP 8M, :BP 12M, :BP 6M, :BP 8W,
        :BP 12W, :BP 6W, :BP 8F, :BP 12F,
        :BP 6F
    ),
    Effects( :Subject, :Dose ),
    Personality( "Manova" ),
    Run
);

Fit a standard least squares model with a box cox transformation


// Open data table
dt = Open("$Sample_Data/BoxCox.jmp");
// Fit Model
Fit Model(
    Y( :y ),
    Effects(
        :load, :flow, :load * :flow,
        :speed, :load * :speed,
        :flow * :speed, :mud,
        :load * :mud, :flow * :mud,
        :speed * :mud
    ),
    Personality(
        "Standard Least Squares"
    ),
    Run( Box Cox Y Transformation( 1 ) )
);

Generate an ordinal logistic model


// Open data table
dt = Open("$Sample_Data/Cheese.jmp");
// Fit Model
Fit Model(
    Freq( :Count ),
    Y( :Response ),
    Effects( :Cheese ),
    Personality( "Ordinal Logistic" ),
    Run
);

Generate discriminant analysis


// Open data table
dt = Open("$Sample_Data/Cherts.jmp");
// Discriminant
Discriminant(
    X( :location name ),
    Y(
        :Al, :Mn, :Na, :Br, :Ce, :Co, :Cr,
        :Cs, :Eu, :Fe, :Hf, :La, :Sc, :Sm,
        :U
    ),
    Show Classification Counts( 1 )
);

Fit a manova model


// Open data table
dt = Open("$Sample_Data/Cholesterol.jmp");
// Fit Model
Fit Model(
    Y(
        :April AM, :April PM, :May AM,
        :May PM, :June AM, :June PM
    ),
    Effects( :treatment ),
    Personality( "Manova" ),
    Run
);


// Open data table
dt = Open("$Sample_Data/CrabSatellites.jmp");
// Model
Fit Model(
    Y( :satell ),
    Effects(
        :color, :spine, :width, :weight
    ),
    Center Polynomials( 0 ),
    Personality(
        "Generalized Linear Model"
    ),
    GLM Distribution( "Poisson" ),
    Link Function( "Log" )
);

Build a manova model


// Open data table
dt = Open("$Sample_Data/Crops.jmp");
// Manova
Fit Model(
    Y( :S1, :S3 ),
    Effects( :CROP ),
    Personality( "Manova" ),
    Run
);

Fit a standard least squares model with interaction terms


// Open data table
dt = Open("$Sample_Data/Design Experiment/2x3x4 Factorial.jmp");
// Model
Fit Model(
    Effects(
        :X1, :X2, :X3, :X1 * :X2,
        :X1 * :X3, :X2 * :X3
    ),
    Y( :Y ),
    PERSONALITY( Standard Least Squares )
);

Fit a mixed model with whole plots and subplots


// Open data table
dt = Open("$Sample_Data/Design Experiment/Battery Data.jmp");
// Model
Fit Model(
    Effects(
        :Whole Plots & Random,
        :Subplots & Random, :A1, :A2, :A3,
        :A4, :C1, :C2, :A1 * :A2,
        :A1 * :A3, :A1 * :A4, :A1 * :C1,
        :A1 * :C2, :A2 * :A3, :A2 * :A4,
        :A2 * :C1, :A2 * :C2, :A3 * :A4,
        :A3 * :C1, :A3 * :C2, :A4 * :C1,
        :A4 * :C2, :C1 * :C2
    ),
    Y( :OCV )
);

Fit a standard least squares model with REML estimation using specified random effects and interactions for OCV in the Battery Data dataset.


// Open data table
dt = Open("$Sample_Data/Design Experiment/Battery Data.jmp");
// Reduced Model 2
Fit Model(
    Y( :OCV ),
    Effects(
        :Whole Plots & Random,
        :Subplots & Random, :A1, :A2, :A4,
        :C1, :C2, :A1 * C1, :A1 * C2,
        :A2 * C1, :A4 * C2
    ),
    Keep dialog open( 1 ),
    Personality(
        "Standard Least Squares"
    ),
    Method( "REML" )
);

Fit a Gaussian Process model to predict the response variable using several predictor variables in a Design of Experiments (DOE) context.


// Open data table
dt = Open("$Sample_Data/Design Experiment/Borehole Sphere Packing.jmp");
// Model (GP from DOE)
Gaussian Process(
    Y( :Y ),
    X(
        :log10 Rw, :log10 R, :Tu, :Tl,
        :Hu, :Hl, :L, :Kw
    )
);

Fit a standard least squares linear regression model with multiple interaction terms between silica, sulfur, and silane, using stretch as the response variable.


// Open data table
dt = Open("$Sample_Data/Design Experiment/Bounce Data.jmp");
// Model
Fit Model(
    Effects(
        :Silica & RS, :Sulfur & RS,
        :Silane & RS, :Silica * :Sulfur,
        :Silica * :Silane,
        :Sulfur * :Silane,
        :Silica * :Silica,
        :Sulfur * :Sulfur,
        :Silane * :Silane
    ),
    Y( :Stretch ),
    PERSONALITY(
        "Standard Least Squares"
    )
);

Analyze design experiment by evaluating factor effects for grind, temperature, time, charge, and station using the Evaluate Design function in the DOE platform.


// Open data table
dt = Open("$Sample_Data/Design Experiment/Coffee Data.jmp");
// Evaluate Design
DOE(
    Evaluate Design,
    X(
        :Grind, :Temperature, :Time,
        :Charge, :Station
    )
);

Fit a standard least squares regression model using the Strength variable as the response and Time, Charge, and Station as the predictors.


// Open data table
dt = Open("$Sample_Data/Design Experiment/Coffee Data.jmp");
// Reduced Model
Fit Model(
    Y( :Strength ),
    Effects( :Time, :Charge, :Station ),
    Keep dialog open( 1 ),
    Personality(
        "Standard Least Squares"
    ),
    Emphasis( "Effect Screening" )
);

Fit a standard least squares regression model with multiple effects and interactions.


// Open data table
dt = Open("$Sample_Data/Design Experiment/DOE Example 1.jmp");
// Model
Fit Model(
    Effects(
        :Operator, :Speed, :Current,
        :Operator * :Speed,
        :Operator * :Current,
        :Speed * :Current
    ),
    Y( :Depth ),
    PERSONALITY(
        "Standard Least Squares"
    )
);

Generate a full factorial mixture experiment model using the Fit Model function with specified effects.


// Open data table
dt = Open("$Sample_Data/Design Experiment/Donev Mixture Data.jmp");
// Model
Fit Model(
    Effects(
        :CuSO4 & RS & Mixture,
        :Na2S2O3 & RS & Mixture,
        :Glyoxal & RS & Mixture,
        :CuSO4 * :Na2S2O3,
        :CuSO4 * :Glyoxal,
        :CuSO4 * :Wavelength,
        :Na2S2O3 * :Glyoxal,
        :Na2S2O3 * :Wavelength,
        :Glyoxal * :Wavelength
    ),
    Y( :Damping ),
    No Intercept( 1 )
);

Perform Definitive Screening Analysis with Response Variable Yield and Eight Predictor Variables.


// Open data table
dt = Open("$Sample_Data/Design Experiment/Extraction2 Data.jmp");
// Fit Definitive Screening
Fit Definitive Screening(
    Y( :Yield ),
    X(
        :Lot, :Methanol, :Ethanol,
        :Propanol, :Butanol, :pH, :Time
    )
);

Generate a Definitive Screening Design to identify significant factors affecting yield in an extraction process.


// Open data table
dt = Open("$Sample_Data/Design Experiment/Extraction3 Data.jmp");
// Fit Definitive Screening
Fit Definitive Screening(
    X(
        :Lot, :Methanol, :Ethanol,
        :Propanol, :Butanol, :pH, :Time
    ),
    Y( :Yield )
);

Fit a multiple regression model using the Fit Model platform .


// Open data table
dt = Open("$Sample_Data/Design Experiment/Metacrate Limit Of Detection DOE.jmp");
// Model
Fit Model(
    Effects(
        :Dichloromethane & RS,
        :Methanol & RS,
        :Sample Volume & RS,
        :Dichloromethane *
        :Dichloromethane,
        :Dichloromethane * :Methanol,
        :Methanol * :Methanol,
        :Dichloromethane * :Sample Volume,
        :Methanol * :Sample Volume,
        :Sample Volume * :Sample Volume
    ),
    Y( :Metacrate )
);

Fit a two-part mixed effect model using the Fit Model function to analyze the effects of brand, time, and power on the number of popped and total kernels in popcorn.


// Open data table
dt = Open("$Sample_Data/Design Experiment/Popcorn DOE Results.jmp");
// Model
Fit Model(
    Effects(
        :Brand, :Time, :Power,
        :Brand * :Time, :Brand * :Power,
        :Time * :Power, :Time * :Time,
        :Power * :Power
    ),
    Y( :Number Popped ),
    Y( :Total Kernels )
);

Perform a nonlinear regression model using the Nonlinear function.


// Open data table
dt = Open("$Sample_Data/Design Experiment/Reaction Kinetics.jmp");
// Model
Nonlinear(
    Y( :Observed Yield ),
    X( :Yield Model )
);

Fit a complex linear model with multiple effects and interactions to predict the chemical reaction yield.


// Open data table
dt = Open("$Sample_Data/Design Experiment/Reactor 20 Custom.jmp");
// Model
Fit Model(
    Effects(
        :Feed Rate, :Catalyst, :Stir Rate,
        :Temperature, :Concentration,
        :Feed Rate * :Catalyst,
        :Feed Rate * :Stir Rate,
        :Feed Rate * :Temperature,
        :Feed Rate * :Concentration,
        :Catalyst * :Stir Rate,
        :Catalyst * :Temperature,
        :Catalyst * :Concentration,
        :Stir Rate * :Temperature,
        :Stir Rate * :Concentration,
        :Temperature * :Concentration
    ),
    Y( :Percent Reacted )
);

Fit a reduced general linear model with interactions between catalyst, temperature, and concentration to predict percent reacted.


// Open data table
dt = Open("$Sample_Data/Design Experiment/Reactor 20 Custom.jmp");
// Reduced Model
Fit Model(
    Y( :Percent Reacted ),
    Effects(
        :Catalyst, :Temperature,
        :Concentration,
        :Catalyst * :Temperature,
        :Temperature * :Concentration
    ),
    Personality(
        "Standard Least Squares"
    )
);

Fit a standard least squares multiple regression model with interactions between feed rate, catalyst, stir rate, temperature, and concentration to predict percent reacted.


// Open data table
dt = Open("$Sample_Data/Design Experiment/Reactor 8 Runs.jmp");
// Model
Fit Model(
    Effects(
        :Feed Rate, :Catalyst, :Stir Rate,
        :Temperature, :Concentration,
        :Feed Rate * :Catalyst,
        :Feed Rate * :Stir Rate
    ),
    Y( :Percent Reacted ),
    PERSONALITY(
        "Standard Least Squares"
    )
);

Build a decision tree to predict a binary outcome using specified independent variables, including initial splits and validation settings.


// Open data table
dt = Open("$Sample_Data/Diabetes.jmp");
// Decision Tree of Y Binary
Partition(
    Y( :Y Binary ),
    X(
        :Age, :Gender, :BMI, :BP,
        :Total Cholesterol, :LDL, :HDL,
        :TCH, :LTG, :Glucose
    ),
    Validation( :Validation ),
    Split History( 1 ),
    Informative Missing( 1 ),
    Initial Splits(
        :LTG >= 4.6444,
        {:BMI >= 32.3, {}, {:LTG >=
        5.3423}},
        {:BP >= 102}
    )
);

Fit a neural network model for binary classification using specified input variables and a tanh activation function.


// Open data table
dt = Open("$Sample_Data/Diabetes.jmp");
// Neural of Y Binary
Neural(
    Y( :Y Binary ),
    X(
        :Age, :Gender, :BMI, :BP,
        :Total Cholesterol, :LDL, :HDL,
        :TCH, :LTG, :Glucose
    ),
    Validation( :Validation ),
    Informative Missing( 0 ),
    Set Random Seed( 1234 ),
    Fit( NTanH( 3 ) )
);

Analyze and Fit a Curve of Dissolution with Respect to Time, Including a Grouping by Batch and Utilizing F2 Analysis with Bootstrapping.


// Open data table
dt = Open("$Sample_Data/Dissolution DoE Verification Runs.jmp");
// Fit Curve of Dissolution by Time
Fit Curve(
    Y( :Dissolution ),
    X( :Time ),
    Group( :Batch ),
    F2 Analysis(
        Unit ID( :Tablet in Batch ),
        Alpha( 0.1 ),
        Reference Level( "Reference" ),
        Bootstrap Samples( 2500 )
    )
);

Fit a generalized linear model using the Fit Model platform with specified effects and without an intercept term.


// Open data table
dt = Open("$Sample_Data/Dissolution DoE.jmp");
// Model
Fit Model(
    Effects(
        :Polymer A & Mixture,
        :Polymer B & Mixture,
        :Polymer A * :Total Polymer,
        :Polymer A * :Compression Force,
        :Polymer B * :Total Polymer,
        :Polymer B * :Compression Force,
        :Total Polymer *
        :Compression Force
    ),
    Y( :Dissolution 60 ),
    No Intercept( 1 )
);

Perform a bivariate analysis fitting LogHist1 as the response variable and LogHist0 as the explanatory variable using the Bivariate platform.


// Open data table
dt = Open("$Sample_Data/Dogs.jmp");
// Fit LogHist1 By LogHist0
Bivariate(
    Y( :LogHist1 ),
    X( :LogHist0 )
);

Fit a generalized linear model with separate slopes for different levels of a categorical variable using the standard least squares personality in the Fit Model platform.


// Open data table
dt = Open("$Sample_Data/Drug.jmp");
// Fit Model-separate slopes
Fit Model(
    Y( :y ),
    Effects( :Drug, :x, :Drug * :x ),
    Personality(
        "Standard Least Squares"
    ),
    Run
);

Fit a linear mixed model with multiple fixed effects and interactions using the Fit Model platform.


// Open data table
dt = Open("$Sample_Data/Functional Data/Mill DOE.jmp");
// Model
Fit Model(
    Effects(
        :"%Beads"n, :"%Strength"n,
        :"Flow(g/min)"n, :"T(ºC)"n,
        :"%Beads"n * :"%Strength"n,
        :"%Beads"n * :"Flow(g/min)"n,
        :"%Beads"n * :"T(ºC)"n,
        :"%Strength"n * :"Flow(g/min)"n,
        :"%Strength"n * :"T(ºC)"n,
        :"Flow(g/min)"n * :"T(ºC)"n,
        :"%Beads"n * :"%Beads"n,
        :"%Strength"n * :"%Strength"n,
        :"Flow(g/min)"n * :"Flow(g/min)"n,
        :"T(ºC)"n * :"T(ºC)"n
    ),
    Y( :"Size/nm"n )
);

Analyze durability data using a oneway ANOVA to compare means across brands in the Golf Balls dataset.


// Open data table
dt = Open("$Sample_Data/Golf Balls.jmp");
// Oneway: Durability by Brand
Oneway(
    Y( :Durability ),
    X( :Brand ),
    Mean Lines( 1 ),
    Connect Means( 1 ),
    Grand Mean( 0 )
);

Fit a Stepwise Regression Model with Interaction Terms


// Open data table
dt = Open("$Sample_Data/Hot Dogs2.jmp");
// Fit Model
Fit Model(
    Y( :"$/oz"n ),
    Effects(
        :Type, :Size, :Type * :Size
    ),
    Personality( "Stepwise" ),
    Run
);

Perform an Oneway analysis with Height as the response variable and Gender as the factor, displaying the means and mean diamonds on the plot.


// Open data table
dt = Open("$Sample_Data/Htwt12.jmp");
// Oneway
Oneway(
    Y( :Height ),
    X( :Gender ),
    Means( 1 ),
    Box Plots( 0 ),
    Mean Diamonds( 1 )
);

Perform discriminant analysis to classify species based on sepal and petal measurements using the Iris dataset.


// Open data table
dt = Open("$Sample_Data/Iris.jmp");
// Discriminant
Discriminant(
    X( :Species ),
    Y(
        :Sepal length, :Sepal width,
        :Petal length, :Petal width
    )
);

Perform a multiple linear regression analysis using the Standard Least Squares personality.


// Open data table
dt = Open("$Sample_Data/Longley.jmp");
// Fit Model
Fit Model(
    Y( :y ),
    Effects(
        :x1, :x2, :x3, :x4, :x5, :x6
    ),
    Personality(
        "Standard Least Squares"
    ),
    Emphasis( "Effect Leverage" ),
    Run
);

Create a loss function template for a Tobit model with a single predictor and standard error parameter.


// Tobit1.jsl
///////////////////////////////////////////////////////////////////////////////////////////////////////////
// JSL to create a loss function template of Tobit1                          //
///////////////////////////////////////////////////////////////////////////////////////////////////////////

dt= new table ("Tobit1");
dt<<New Column("Y", Numeric,continuous);   
dt<<New Column("Model", Numeric,continuous);
dt<<New Column("Tobit Loss", Numeric,continuous);

column( "Model") << formula( Parameter({b0=0, b1=0, b2=0},  :y-(b0+b1*Empty()+b2*Empty()))  );
column( "Tobit Loss") << formula( Parameter({Sigma=1}, -IfMZ( :y==0, Log(1-Normal Distribution(- :Model/Sigma)), (-Log(Sigma))-0.5*( :Model/Sigma)^2-0.5*Log(2*Pi()))) );

Create a loss function template for a Weibull distribution with one parameter.


// Weibull, 1 Parm.jsl
///////////////////////////////////////////////////////////////////////////////////////////////////////////
// JSL to create a loss function template of Weibull, 1 Parm          //
///////////////////////////////////////////////////////////////////////////////////////////////////////////

dt= new table ("Weibull, 1 Parm");
dt<<New Column("Censor", Numeric,continuous);   
dt<<New Column("Model", Numeric,continuous);
dt<<New Column("Weibull", Numeric,continuous);

column( "Model") << formula( Parameter({b0=3.93988152926993, b1=0.004505313558698, b2=-0.01244813868867}, Log(Empty())-(b0+b1*Empty()+b2*Empty()))  );
column( "Weibull") << formula( Parameter({sigma=0.928115276636918}, -IfMZ( :Censor==0,  :Model/sigma-Exp( :Model/sigma)-Log(sigma), -Exp( :Model/sigma)))  );

Perform a one-way ANOVA analysis on the variables Count1 and Count2 using the Brand variable as the classifier, and generate pairwise comparisons using Student's t-test and Hsu-MCB method.


// Open data table
dt = Open("$Sample_Data/Membrane.jmp");
// Oneway
Oneway(
    Y( :Count1, :Count2 ),
    X( :Brand ),
    Anova( 1 ),
    Student's t( 1 ),
    Hsu MCB( 1 )
);

Fit a reduced nonlinear model with equal alphas for algae density.


// Open data table
dt = Open("$Sample_Data/Nonlinear Examples/Algae Mitscherlich.jmp");
// Reduced nonlinear model-with equal alphas
Nonlinear(
    Y( :Algae density ),
    X( :equal alphas ),
    Finish
);

Create a nonlinear regression model to analyze algae density using the Algae Mitscherlich dataset with equal betas.


// Open data table
dt = Open("$Sample_Data/Nonlinear Examples/Algae Mitscherlich.jmp");
// Reduced nonlinear model-with equal betas
Nonlinear(
    Y( :Algae density ),
    X( :equal betas ),
    Finish
);

Fit a nonlinear Meyers Model to the given dataset using the Newton method.


// Open data table
dt = Open("$Sample_Data/Nonlinear Examples/Chemical Kinetics.jmp");
// Meyers Model Fit
Nonlinear(
    Y( :"Velocity (y)"n ),
    X( :"Model (x)"n ),
    Newton,
    Finish
);

Perform a nonlinear analysis with the response variable designated as Model2 Y and the loss function specified as Loss2, utilizing gradient-based optimization techniques and Newton's method.


// Open data table
dt = Open("$Sample_Data/Nonlinear Examples/Logistic w Loss.jmp");
// Nonlinear with Model2 Y and Loss2
Nonlinear(
    X( :Model2 Y ),
    Loss( :Loss2 ),
    Relative Gradient( 0.000000001 ),
    Gradient Limit( 0.000000001 ),
    CL Limit( 0.00000001 ),
    Numeric Derivatives Only( 1 ),
    Loss is Neg LogLikelihood( 1 ),
    Newton,
    Finish,
    Plot( 0 )
);

Perform a one-way analysis of variance with nonparametric tests on the Gain variable while grouping data by the Dose variable using the Wilcoxon Test, Median Test, and van der Waerden Test.


// Open data table
dt = Open("$Sample_Data/Nonparametric.jmp");
// Oneway with NP Tests
Oneway(
    Y( :Gain ),
    X( :Dose ),
    Wilcoxon Test( 1 ),
    Median Test( 1 ),
    van der Waerden Test( 1 )
);


// Open data table
dt = Open("$Sample_Data/Nor.jmp");
// Model
Fit Model(
    Y( :Y ),
    Effects( :X ),
    Personality(
        "Generalized Linear Model"
    ),
    GLM Distribution( "Normal" ),
    Link Function( "Log" ),
    Overdispersion Tests and Intervals(
        1
    )
);

Fit a multiple regression model using standard least squares personality to predict odor based on temperature, glucose ratio, and height, including their interactions.


// Open data table
dt = Open("$Sample_Data/Odor.jmp");
// Model
Fit Model(
    Effects(
        temp & RS, gl ratio & RS, ht & RS,
        temp * gl ratio, temp * ht,
        gl ratio * ht, temp * temp,
        gl ratio * gl ratio, ht * ht
    ),
    Y( :odor ),
    Personality(
        "Standard Least Squares"
    )
);

Fit a linear regression model using the Fit Model platform .


// Open data table
dt = Open("$Sample_Data/Polycity.jmp");
// Fit Model with Linear Fit
Fit Model(
    Y( :OZONE ),
    Effects( :POP ),
    Personality(
        "Standard Least Squares"
    ),
    Emphasis( "Effect Leverage" ),
    Run(
        :OZONE << {Lack of Fit( 0 ),
        Plot Actual by Predicted( 1 ),
        Plot Residual by Predicted( 1 ),
        Plot Effect Leverage( 1 )}
    )
);

Fit a full factorial model with interaction effects for popcorn yield, popcorn type, oil amount, batch, and their interactions.


// Open data table
dt = Open("$Sample_Data/Popcorn.jmp");
// Full Factorial Model
Fit Model(
    Y( :yield ),
    Effects(
        :popcorn, :oil amt,
        :popcorn * :oil amt, :batch,
        :popcorn * :batch,
        :oil amt * :batch,
        :popcorn * :oil amt * :batch
    ),
    Personality(
        "Standard Least Squares"
    ),
    Run
);

Perform a destructive degradation analysis using the Destructive Degradation() function with multiple models and control methods.


// Open data table
dt = Open("$Sample_Data/Reliability/Adhesive Bond.jmp");
// Destructive Degradation Fit
Destructive Degradation(
    Y( :Strength ),
    Time( :Weeks ),
    Censor( :Censor ),
    X( :Degrees ),
    Censor Code( "Right" ),
    Model(
        "Log10", "Sqrt", "Normal",
        "Individual Path with Intercept"
    ),
    Control(
        "Log10", "Sqrt", "Normal",
        "Individual Path with Intercept"
    )
);

Fit a proportional hazards model to analyze device lifetimes, including effects of average load, average moisture, average vibration, average solar exposure, and location coordinates, while accounting for censoring.


// Open data table
dt = Open("$Sample_Data/Reliability/Device X Lifetimes.jmp");
// Fit Proportional Hazards
Fit Model(
    Y( :Usage Hours ),
    Effects(
        :Avg Load, :Avg Moisture,
        :Avg Vibration,
        :Avg Solar Exposure, :Location X,
        :Location Y
    ),
    Personality( "Proportional Hazard" ),
    Censor( :Censor ),
    Censor Code( "1" ),
    Run( Likelihood Ratio Tests( 1 ) )
);

Fit a parametric survival model with a LogNormal distribution for two continuous response variables YLow and YHigh, considering age and liquidity as predictors using the Fit Model platform .


// Open data table
dt = Open("$Sample_Data/Reliability/Tobit2.jmp");
// Model
Fit Model(
    Y( :YLow, :YHigh ),
    Effects( :age, :liquidity ),
    Personality( "Parametric Survival" ),
    Distribution( LogNormal )
);

Fit a parametric survival model using the LogNormal distribution and include effects for 'age' and 'liquidity'.


// Open data table
dt = Open("$Sample_Data/Reliability/Tobit2.jmp");
// Fit Parametric Survival
Fit Model(
    Y( :YLow, :YHigh ),
    Effects( :age, :liquidity ),
    Personality( "Parametric Survival" ),
    Distribution( LogNormal ),
    Run( Likelihood Ratio Tests( 1 ) )
);

Fit a standard least squares regression model with aperture, ranging, and cadence as predictors for yield.


// Open data table
dt = Open("$Sample_Data/Ro.jmp");
// Regression Model
Fit Model(
    Y( :Yield ),
    Effects(
        :Aperture, :Ranging, :Cadence
    ),
    Personality(
        "Standard Least Squares"
    ),
    Run
);

Fit a main effects model with interaction terms using the Fit Model function and specify the dependent variable and effects in the script.


// Open data table
dt = Open("$Sample_Data/S4 Temps.jmp");
// Main Effects Model
Fit Model(
    Effects(
        :day & Random, :time of day,
        :thermometer, :outside temp,
        :type of space, :east or west,
        :sector, :wing, :volunteer,
        :outside conditions
    ),
    Y( :fahrenheit )
);

Perform a one-way ANOVA analysis on temperature data across different offices .


// Open data table
dt = Open("$Sample_Data/S4 Temps.jmp");
// Oneway - Offices
Oneway(
    Y( :fahrenheit ),
    X( :"room/office"n ),
    SendToReport(
        Dispatch( {}, "Oneway Plot",
            FrameBox,
            {
            Marker Selection Mode(
                "Selected Haloed"
            )}
        )
    )
);

Fit nonlinear Poisson regression using the Newton-Raphson method.


// Open data table
dt = Open("$Sample_Data/Ship Damage.jmp");
// Nonlinear
Nonlinear(
    X( :model ),
    Loss( :Poisson ),
    Loss is Neg LogLikelihood( 1 ),
    Newton,
    Finish,
    Plot( 0 )
);

Fit a Nominal Logistic regression model with multiple predictors.


// Open data table
dt = Open("$Sample_Data/Skull.jmp");
// Fit Model
Fit Model(
    Y( :sex ),
    Effects(
        :length, :basilar, :zygomat,
        :postorb
    ),
    Personality( "Nominal Logistic" ),
    Run
);

Fit a full factorial generalized linear model to predict tool wear.


// Open data table
dt = Open("$Sample_Data/Tool Wear.jmp");
// Fit Model: Full Factorial Specification
Fit Model(
    Y( :Wear ),
    Effects(
        :Speed, :Angle, :Speed * :Angle,
        :Material, :Speed * :Material,
        :Angle * :Material,
        :Speed * :Angle * :Material
    ),
    Personality(
        "Standard Least Squares"
    )
);

Fit a proportional hazards model with specified categorical and continuous covariates, including risk ratios for interpretation.


// Open data table
dt = Open("$Sample_Data/VA Lung Cancer.jmp");
// Fit Proportional Hazards
Fit Model(
    Y( :Time ),
    Effects(
        :Cell Type, :Treatment, :Prior,
        :Age, :Diag Time, :KPS
    ),
    Personality( "Proportional Hazard" ),
    Censor( :censor ),
    Run( Risk Ratios( 1 ) )
);

Perform one-way analysis of variance to compare the mean heights (in inches) between different sexes from the World Class.jmp dataset.


// Open data table
dt = Open("$Sample_Data/World Class.jmp");
// Oneway
Oneway(
    Y( :"height (in.)"n ),
    X( :sex ),
    Means( 1 ),
    Mean Diamonds( 1 )
);

Fit a multiple linear regression model using the Standard Least Squares personality and display plots of actual vs. predicted, residual vs. predicted, and effect leverage.


// Open data table
dt = Open("$Sample_Data/World Class.jmp");
// Fit Model
Fit Model(
    Y( :"weight (lb.)"n ),
    Effects(
        :age, :sex, :"height (in.)"n
    ),
    Personality(
        "Standard Least Squares"
    ),
    Run(
        :"weight (lb.)"n <<
        {Plot Actual by Predicted( 1 ),
        Plot Residual by Predicted( 1 ),
        Plot Effect Leverage( 1 )}
    )
);

Build a boosted tree model


// Open data table
dt = Open("$Sample_Data/Bands Data.jmp");
// Boosted Tree of Banding?
Random Reset( 123 );
Boosted Tree(
    Y( :Banding? ),
    X(
        :grain screened,
        :proof on ctd ink, :blade mfg,
        :paper type, :ink type,
        :direct steam, :solvent type,
        :type on cylinder, :press type,
        :unit number, :cylinder size,
        :paper mill location,
        :plating tank, :proof cut,
        :viscosity, :caliper,
        :ink temperature, :humidity,
        :roughness, :blade pressure,
        :varnish pct, :press speed,
        :ink pct, :solvent pct,
        :ESA Voltage, :ESA Amperage, :wax,
        :hardener, :roller durometer,
        :current density,
        :anode space ratio,
        :chrome content
    ),
    Validation Portion( 0.2 ),
    Method( "Boosted Tree" ),
    Splits per Tree( 3 ),
    Number of Layers( 41 ),
    Learning Rate( 0.1 ),
    Go
);

Generate a boosted tree model with validation


// Open data table
dt = Open("$Sample_Data/Body Fat.jmp");
// Boosted Tree
Boosted Tree(
    Y( :Percent body fat ),
    X(
        :"Age (years)"n, :"Weight (lbs)"n,
        :"Height (inches)"n,
        :"Neck circumference (cm)"n,
        :"Chest circumference (cm)"n,
        :"Abdomen circumference (cm)"n,
        :"Hip circumference (cm)"n,
        :"Thigh circumference (cm)"n,
        :"Knee circumference (cm)"n,
        :"Ankle circumference (cm)"n,
        :
        "Biceps (extended) circumference (cm)"n,
        :"Forearm circumference (cm)"n,
        :"Wrist circumference (cm)"n
    ),
    Validation( :Validation ),
    Method( "Boosted Tree" ),
    Splits per Tree( 3 ),
    Number of Layers( 30 ),
    Learning Rate( 0.1 ),
    Go
);

Fit a neural model boosted 100x


// Open data table
dt = Open("$Sample_Data/Body Fat.jmp");
// Neural Boosted
Neural(
    Y( :Percent body fat ),
    X(
        :"Age (years)"n, :"Weight (lbs)"n,
        :"Height (inches)"n,
        :"Neck circumference (cm)"n,
        :"Chest circumference (cm)"n,
        :"Abdomen circumference (cm)"n,
        :"Hip circumference (cm)"n,
        :"Thigh circumference (cm)"n,
        :"Knee circumference (cm)"n,
        :"Ankle circumference (cm)"n,
        :
        "Biceps (extended) circumference (cm)"n,
        :"Forearm circumference (cm)"n,
        :"Wrist circumference (cm)"n
    ),
    Validation( :Validation ),
    Missing Value Coding( 0 ),
    Transform Covariates( 1 ),
    Fit(
        NTanH( 1 ),
        Transform Covariates( 1 ),
        Robust Fit( 1 ),
        N Boost( 100 ),
        Diagram( 1 )
    )
);

Use model comparison to compare several types of models


// Open data table
dt = Open("$Sample_Data/Body Fat.jmp");
// Model Comparison
Model Comparison(
    Y(
        :
        "Pred Body Fat - 2nd Order Stepwise"n,
        :
        "Pred Body Fat - Variable Reduction PCA"n,
        :"Pred Body Fat - Stepwise"n,
        :"Pred Body Fat - Partition"n,
        :"Pred Body Fat - PLS"n,
        :
        "Pred Body Fat - Bootstrap Forest"n,
        :"Pred Body Fat - Boosted Tree"n,
        :
        "Pred Body Fat - Neural (3,0,0)"n,
        :
        "Pred Body Fat - Neural (4,0,0),(8,0,0)"n,
        :
        "Pred Body Fat - Boosted Neural"n,
        :
        "Pred Body Fat - Ensemble Model"n
    ),
    Where(
        Format( :Validation ) ==
        "Validation"
    )
);

Fit a model with the prediction profiler with desirability functions


// Open data table
dt = Open("$Sample_Data/Chips R Us.jmp");
// Fit Model
Fit Model(
    Y(
        :MN ckt wx, :MN ckt yz,
        :SD ckt wx, :SD ckt yz
    ),
    Effects(
        :Thickness, :PEB, :PUDDLE, :time,
        :focus
    ),
    Personality(
        "Standard Least Squares"
    ),
    Run(
        Profiler(
            Confidence Intervals( 1 ),
            Desirability Functions( 1 )
        ),
        :MN ckt wx <<
        {Scaled Estimates( 1 ),
        Plot Actual by Predicted( 1 )},
        :MN ckt yz <<
        {Scaled Estimates( 1 ),
        Plot Actual by Predicted( 1 )},
        :SD ckt wx <<
        {Scaled Estimates( 1 ),
        Plot Actual by Predicted( 1 )},
        :SD ckt yz <<
        {Scaled Estimates( 1 ),
        Plot Actual by Predicted( 1 )}
    )
);

Fit a standard least squares linear model to the data in the Borehole Latin Hypercube dataset, with log y as the response variable, and include specified effects and their interactions. Enhance the model with a profiler that includes confidence intervals and term value settings for effective effect screening. Plot the scaled estimates and actual by predicted values for visual analysis.


// Open data table
dt = Open("$Sample_Data/Design Experiment/Borehole Latin Hypercube.jmp");
// Fit Model
Fit Model(
    Y( :log y ),
    Effects(
        :log10 Rw, :log10 R, :Tu, :Tl,
        :Hu, :Hl, :L, :Kw, :Hu * :Hu,
        :L * :L, :Hl * :Hl, :Kw * :Kw,
        :Hl * :Hu
    ),
    Personality(
        "Standard Least Squares"
    ),
    Emphasis( "Effect Screening" ),
    Run(
        Profiler(
            1,
            Confidence Intervals( 1 ),
            Term Value(
                log10 Rw(
                    -1.06,
                    Max( -0.82 )
                ),
                log10 R( 3.35 ),
                Tu( 89335 ),
                Tl( 89.55, Min( 63.1 ) ),
                Hu( 1050 ),
                Hl( 760 ),
                L( 1400 ),
                Kw( 10950 )
            )
        ),
        :Y << {Scaled Estimates( 1 ),
        Plot Actual by Predicted( 1 )}
    )
);

Fit a linear regression model using the Least Squares method with multiple effects, including interactions and polynomial terms.


// Open data table
dt = Open("$Sample_Data/Design Experiment/Borehole Sphere Packing.jmp");
// Fit Model (Least Squares)
Fit Model(
    Y( :log y ),
    Effects(
        :log10 Rw, :log10 R, :Tu, :Tl,
        :Hu, :Hl, :L, :Kw, :Hu * :Hu,
        :L * :L, :Hl * :Hl, :Kw * :Kw,
        :Hl * :Hu
    ),
    Personality(
        "Standard Least Squares"
    ),
    Emphasis( "Effect Screening" ),
    Run(
        Profiler(
            1,
            Confidence Intervals( 1 ),
            Term Value(
                log10 Rw(
                    -1.06,
                    Max( -0.82 )
                ),
                log10 R( 3.35 ),
                Tu( 89335 ),
                Tl( 89.55, Min( 63.1 ) ),
                Hu( 1050 ),
                Hl( 760 ),
                L( 1400 ),
                Kw( 10950 )
            )
        ),
        :Y << {Scaled Estimates( 1 ),
        Plot Actual by Predicted( 1 )}
    )
);

Fit a standard least squares model to the borehole uniform dataset, focusing on effect screening with various model effects, including interactions.


// Open data table
dt = Open("$Sample_Data/Design Experiment/Borehole Uniform.jmp");
// Fit Model
Fit Model(
    Y( :log y ),
    Effects(
        :log10 Rw, :log10 R, :Tu, :Tl,
        :Hu, :Hl, :L, :Kw, :Hu * :Hu,
        :L * :L, :Hl * :Hl, :Kw * :Kw,
        :Hl * :Hu
    ),
    Personality(
        "Standard Least Squares"
    ),
    Emphasis( "Effect Screening" ),
    Run(
        Profiler(
            1,
            Confidence Intervals( 1 ),
            Term Value(
                log10 Rw(
                    -1.06,
                    Max( -0.82 )
                ),
                log10 R( 3.35 ),
                Tu( 89335 ),
                Tl( 89.55, Min( 63.1 ) ),
                Hu( 1050 ),
                Hl( 760 ),
                L( 1400 ),
                Kw( 10950 )
            )
        ),
        :Y << {Scaled Estimates( 1 ),
        Plot Actual by Predicted( 1 )}
    )
);

Perform stepwise regression analysis to identify significant effects on yield in the design experiment data.


// Open data table
dt = Open("$Sample_Data/Design Experiment/Extraction Data.jmp");
// Model for Stepwise
Fit Model(
    Y( :Yield ),
    Effects(
        :Methanol & RS, :Ethanol & RS,
        :Propanol & RS, :Butanol & RS,
        :pH & RS, :Time & RS,
        :Methanol * :Methanol,
        :Methanol * :Ethanol,
        :Ethanol * :Ethanol,
        :Methanol * :Propanol,
        :Ethanol * :Propanol,
        :Propanol * :Propanol,
        :Methanol * :Butanol,
        :Ethanol * :Butanol,
        :Propanol * :Butanol,
        :Butanol * :Butanol,
        :Methanol * :pH, :Ethanol * :pH,
        :Propanol * :pH, :Butanol * :pH,
        :pH * :pH, :Methanol * :Time,
        :Ethanol * :Time,
        :Propanol * :Time,
        :Butanol * :Time, :pH * :Time,
        :Time * :Time
    ),
    Personality( "Stepwise" )
);

Fit a standard least squares linear model with multiple main effects and interaction terms to analyze the relationship between reactor conditions and percent reacted.


// Open data table
dt = Open("$Sample_Data/Design Experiment/Reactor 32 Runs.jmp");
// Model
Fit Model(
    Effects(
        :Feed Rate, :Catalyst, :Stir Rate,
        :Temperature, :Concentration,
        :Feed Rate * :Catalyst,
        :Feed Rate * :Stir Rate,
        :Catalyst * :Stir Rate,
        :Feed Rate * :Temperature,
        :Catalyst * :Temperature,
        :Stir Rate * :Temperature,
        :Feed Rate * :Concentration,
        :Catalyst * :Concentration,
        :Stir Rate * :Concentration,
        :Temperature * :Concentration
    ),
    Y( :Percent Reacted ),
    PERSONALITY(
        "Standard Least Squares"
    )
);

Perform equivalence tests for the effects of different drug types on measurements using the Fit Model personality.


// Open data table
dt = Open("$Sample_Data/Drug Measurements.jmp");
// Fit Model Equivalence Tests
Fit Model(
    Y( :Measurement ),
    Effects( :Drug Type ),
    Personality(
        "Standard Least Squares"
    ),
    Emphasis( "Effect Leverage" ),
    Run(
        :Measurement <<
        {Summary of Fit( 0 ),
        Analysis of Variance( 0 ),
        Parameter Estimates( 0 ),
        Lack of Fit( 0 ),
        Scaled Estimates( 0 ),
        Plot Actual by Predicted( 0 ),
        Plot Regression( 0 ),
        Plot Residual by Predicted( 1 ),
        Plot Studentized Residuals( 0 ),
        Plot Effect Leverage( 0 ),
        Plot Residual by Normal Quantiles(
            0
        ), Box Cox Y Transformation( 0 ),
        Effect Tests( 0 ),
        Multiple Comparisons(
            Effect( :Drug Type ),
            Student's t(
                1,
                All Pairwise Comparisons Scatterplot(
                    0
                ),
                Equivalence Tests( 3 )
            )
        )}
    )
);

Create a comprehensive linear model with multiple interaction terms to predict Rating based on various fishing parameters.


// Open data table
dt = Open("$Sample_Data/Fish Patty.jmp");
// Model
Fit Model(
    Effects(
        :Mullet & RS & Mixture,
        :Sheepshead & RS & Mixture,
        :Croaker & RS & Mixture,
        :Mullet * :Sheepshead,
        :Mullet * :Croaker,
        :Mullet * :Temperature,
        :Sheepshead * :Croaker,
        :Sheepshead * :Temperature,
        :Croaker * :Temperature,
        :Mullet * :Sheepshead * :Croaker,
        :Mullet * :Sheepshead *
        :Temperature,
        :Mullet * :Croaker * :Temperature,
        :Sheepshead * :Croaker *
        :Temperature,
        :Mullet * :Sheepshead * :Croaker
         * :Temperature
    ),
    Y( :Rating ),
    No Intercept( 1 )
);

Create a control chart for the sample label Lot with XBar and R charts, including capability analysis and histogram customization.


// Open data table
dt = Open("$Sample_Data/Hardware Surface Unit Data.jmp");
// Control Chart
Control Chart(
    Sample Label( :Lot ),
    KSigma( 3 ),
    Chart Col(
        :X,
        XBar,
        R,
        Capability(
            Distribution(
                Continuous Distribution(
                    Column( :X ),
                    Quantiles( 0 ),
                    Summary Statistics(
                        0
                    ),
                    Count Axis( 1 ),
                    Outlier Box Plot( 0 ),
                    Normal Quantile Plot(
                        1
                    ),
                    Capability Analysis(
                        LSL( 107 ),
                        USL( 147 ),
                        Target( 127 ),
                        Sigma(
                            40.1484175601687
                        )
                    )
                )
            )
        )
    ),
    SendToReport(
        Dispatch( {"Distributions", "X"},
            "Distrib Histogram", FrameBox,
            {
            DispatchSeg(
                Hist Seg( 1 ),
                Histogram Color( 42 )
            )}
        )
    )
);

Generate a Profiler report for three response variables (GP Fit, NL Fit, and Difference) with confidence intervals and specific term values using the Nonlinear Examples/CES Production Function.jmp data table.


// Open data table
dt = Open("$Sample_Data/Nonlinear Examples/CES Production Function.jmp");
// Profiler
Profiler(
    Y( :GP Fit, :NL Fit, :Difference ),
    Profiler(
        1,
        Confidence Intervals( 1 ),
        Term Value(
            l( 0.5 ),
            k( 0.3966 )
        )
    ),
    Expand,
    SendToReport(
        Dispatch( {"Prediction Profiler"},
            "Profiler", FrameBox,
            Frame Size( 174, 87 )
        ),
        Dispatch( {"Prediction Profiler"},
            "Profiler", FrameBox( 2 ),
            Frame Size( 174, 87 )
        ),
        Dispatch( {"Prediction Profiler"},
            "Profiler", FrameBox( 3 ),
            Frame Size( 174, 87 )
        ),
        Dispatch( {"Prediction Profiler"},
            "Profiler", FrameBox( 5 ),
            Frame Size( 174, 87 )
        ),
        Dispatch( {"Prediction Profiler"},
            "Profiler", FrameBox( 6 ),
            Frame Size( 174, 87 )
        ),
        Dispatch( {"Prediction Profiler"},
            "Profiler", FrameBox( 7 ),
            Frame Size( 174, 87 )
        )
    )
);

Construct a choice model using the Profiles, Responses, and Subjects data tables, and specify the response, profile, and subject effects. Adjust for Firth bias and include likelihood ratio tests.


// Open data table
dt = Open("$Sample_Data/Pizza Responses.jmp");
// Choice
Open( "$Sample_Data/Pizza Profiles.jmp" );
Open( "$Sample_Data/Pizza Subjects.jmp" );
Choice(
    Response Data Table(
        Data Table( "Pizza Responses" )
    ),
    Profile DataTable( Pizza Profiles ),
    Subject DataTable(
        Data Table( "Pizza Subjects" )
    ),
    Response Subject ID( :Subject ),
    Response Profile ID Choices(
        :Choice1, :Choice2
    ),
    Profile ID( :ID ),
    Profile Effects(
        :Crust, :Cheese, :Topping
    ),
    Subject Subject ID( :Subject ),
    Subject Effects( :Gender ),
    "Firth Bias-Adjusted Estimates"n( 1 ),
    Response Profile ID Chosen( :Choice ),
    Likelihood Ratio Tests( 1 )
);

Fit a standard least squares regression model to the data with specified effects after stepwise selection, emphasizing effect leverage and generating diagnostic plots.


// Open data table
dt = Open("$Sample_Data/S4 Temps.jmp");
// Final Model, after Stepwise
Fit Model(
    Y( :fahrenheit ),
    Effects(
        :time of day, :east or west,
        :time of day * :east or west,
        :thermometer, :type of space,
        :sector, :volunteer
    ),
    Personality(
        "Standard Least Squares"
    ),
    Emphasis( "Effect Leverage" ),
    Run(
        :fahrenheit <<
        {Parameter Estimates( 0 ),
        Plot Actual by Predicted( 1 ),
        Plot Regression( 0 ),
        Plot Residual by Predicted( 1 ),
        Plot Effect Leverage( 1 )}
    )
);

Generate a standard least squares regression model with minimal diagnostic plots and analyze effect tests.


// Open data table
dt = Open("$Sample_Data/Singularity.jmp");
// Fit Model Report
Fit Model(
    Y( :Y ),
    Effects( :X1, :A ),
    Personality(
        "Standard Least Squares"
    ),
    Emphasis( "Minimal Report" ),
    Run(
        :Y << {Analysis of Variance( 1 ),
        Lack of Fit( 0 ),
        Plot Actual by Predicted( 0 ),
        Plot Residual by Predicted( 0 ),
        Plot Effect Leverage( 0 )}
    ),
    SendToReport(
        Dispatch( {"Response Y"},
            "Effect Tests", OutlineBox,
            {Close( 0 )}
        )
    )
);

Fit a quadratic model with multiple interaction effects using the Fit Model function.


// Open data table
dt = Open("$Sample_Data/Stochastic Optimization.jmp");
// Quadratic Model
Fit Model(
    Effects(
        :Reaction Time & RS,
        :Reaction Temperature & RS,
        :Reaction Time * :Reaction Time,
        :Reaction Time *
        :Reaction Temperature,
        :Reaction Temperature *
        :Reaction Temperature,
        :Reaction Time * :Reaction Time
         * :Reaction Time,
        :Reaction Time * :Reaction Time
         * :Reaction Temperature,
        :Reaction Time * (
        Reaction Temperature *
        :Reaction Temperature),
        :Reaction Temperature *
        :Reaction Temperature *
        :Reaction Temperature
    ),
    Y( :Yield )
);

Perform a partition analysis on the Tablet Production data table, focusing on the Lot Acceptance variable as the Y variable and including multiple X variables, and use the Maximize Significance criterion.


// Open data table
dt = Open("$Sample_Data/Tablet Production.jmp");
// Partition
Partition(
    Y( :Lot Acceptance ),
    X(
        :API Particle Size, :Mill Time,
        :Screen Size,
        :Mag. Stearate Supplier,
        :Lactose Supplier,
        :Sugar Supplier, :Talc Supplier,
        :Blend Time, :Blend Speed,
        :Compressor, :Force,
        :Coating Supplier,
        :Coating Viscosity, :Inlet Temp,
        :Exhaust Temp, :Spray Rate,
        :Atomizer Pressure
    ),
    Minimum Size Split( 5 ),
    Show Split Prob( 1 ),
    Sort Split Candidates( 0 ),
    Criterion( "Maximize Significance" )
);