Dimensionality Reduction
More examples for this topic using the sample data files provided with JMP
Perform principal components: analysis for variable reduction
// Open data table
dt = Open("$Sample_Data/Body Fat.jmp");
// Principal Components: Variable Reduction
Principal Components(
Y(
:"Age (years)"n, :"Weight (lbs)"n,
:"Height (inches)"n,
:"Neck circumference (cm)"n,
:"Chest circumference (cm)"n,
:"Abdomen circumference (cm)"n,
:"Hip circumference (cm)"n,
:"Thigh circumference (cm)"n,
:"Knee circumference (cm)"n,
:"Ankle circumference (cm)"n,
:
"Biceps (extended) circumference (cm)"n,
:"Forearm circumference (cm)"n,
:"Wrist circumference (cm)"n
),
Estimation Method( "Row-wise" ),
on Correlations,
Cluster Variables,
SendToReport(
Dispatch( {"Summary Plots"},
"PCA Summary Plots", FrameBox,
{Frame Size( 51, 37 )}
),
Dispatch( {"Summary Plots"},
"PCA Summary Plots",
FrameBox( 2 ),
{Frame Size( 55, 37 )}
)
)
);
Create a loading plot using the Principal Components analysis with specified correlations and eigenvalues on the dataset.
// Open data table
dt = Open("$Sample_Data/Quality Control/Steam Turbine Historical.jmp");
// Loading plot
Principal Components(
Y(
:Fuel, :Steam Flow, :Steam Temp,
:MW, :Cool Temp, :Pressure
),
Estimation Method( "Default" ),
"on Correlations",
Eigenvalues( 1 ),
Summary Plots( 0 ),
Loading Plot( 4 )
);