XGBoost
Associated Constructors
XGBoost
Syntax: XGBoost(Y( columns ), X( columns ))
Description: Predictive modeling interface to eXtreme Gradient Boosted trees.
JMP Version Added: 19
dt = Open( "$SAMPLE_DATA/Big Class.jmp" );
obj = XGBoost( Y( :Weight ), X( :Height ), Fit );
Columns
Censor
Syntax: obj << Censor( column )
JMP Version Added: 19
dt = Open( "$SAMPLE_DATA/Big Class.jmp" );
obj = XGBoost( Y( :Weight ), X( :Height ), Fit );
Factor
Syntax: obj << Factor( column(s) )
JMP Version Added: 19
dt = Open( "$SAMPLE_DATA/Big Class.jmp" );
obj = XGBoost( Y( :Weight ), X( :Height ), Fit );
Freq
Syntax: obj << Freq( column )
JMP Version Added: 19
dt = Open( "$SAMPLE_DATA/Big Class.jmp" );
dt << New Column( "_freqcol", Numeric, Continuous, Formula( Random Integer( 1, 5 ) ) );
obj = XGBoost( Y( :Weight ), X( :Height ), Fit );
Response
Syntax: obj << Response( column(s) )
JMP Version Added: 19
dt = Open( "$SAMPLE_DATA/Big Class.jmp" );
obj = XGBoost( Y( :Weight ), X( :Height ), Fit );
Validation
Syntax: obj << Validation( column(s) )
JMP Version Added: 19
dt = Open( "$SAMPLE_DATA/Big Class.jmp" );
obj = XGBoost( Y( :Weight ), X( :Height ), Fit );
Weight
Syntax: obj << Weight( column )
JMP Version Added: 19
dt = Open( "$SAMPLE_DATA/Big Class.jmp" );
dt << New Column( "_weightcol", Numeric, Continuous, Formula( Random Beta( 1, 1 ) ) );
obj = XGBoost( Y( :Weight ), X( :Height ), Fit );
X
Syntax: obj << X( column(s) )
JMP Version Added: 19
dt = Open( "$SAMPLE_DATA/Big Class.jmp" );
obj = XGBoost( Y( :Weight ), X( :Height ), Fit );
Y
Syntax: obj << Y( column(s) )
JMP Version Added: 19
dt = Open( "$SAMPLE_DATA/Big Class.jmp" );
obj = XGBoost( Y( :Weight ), X( :Height ), Fit );
Item Messages
Change Variables
Syntax: obj << Change Variables
Description: Changes X, Y, and other variables for subsequent models.
JMP Version Added: 19
Compare
Syntax: obj << Compare
Description: Updates the XGBoost comparison metrics.
JMP Version Added: 19
dt = Open( "$SAMPLE_DATA/Big Class.jmp" );
obj = XGBoost( Y( :Weight ), X( :Height ), Fit( Objective( 0 ) ) );
obj << Compare( Correlation( 1 ) );
Fit
Syntax: obj << Fit
Description: Fits an XGBoost model. You can specify XGBoost parameters and fitting specifications within this.
JMP Version Added: 19
dt = Open( "$SAMPLE_DATA/Big Class.jmp" );
obj = XGBoost( Y( :Weight ), X( :Height ), Fit );
Get Measures
Syntax: obj << Get Measures
JMP Version Added: 19
Redo Analysis
Syntax: obj << Redo Analysis
Description: Rerun this same analysis in a new window. The analysis will be different if the data has changed.
JMP Version Added: 19
dt = Open( "$SAMPLE_DATA/Big Class.jmp" );
obj = XGBoost( Y( :Weight ), X( :Height ), Fit );
obj << Redo Analysis;
Relaunch Analysis
Syntax: obj << Relaunch Analysis
Description: Opens the platform launch window and recalls the settings that were used to create the report.
JMP Version Added: 19
dt = Open( "$SAMPLE_DATA/Big Class.jmp" );
obj = XGBoost( Y( :Weight ), X( :Height ), Fit );
obj << Relaunch Analysis;
Show Details
Syntax: obj << Show Details( state=0|1 )
Description: Shows more details.
JMP Version Added: 19
dt = Open( "$SAMPLE_DATA/Big Class.jmp" );
XGBoost( Y( :Weight ), X( :Height ), Show Details( 1 ) );
Shared Item Messages
Action
Syntax: obj << Action
Description: All-purpose trapdoor within a platform to insert expressions to evaluate. Temporarily sets the DisplayBox and DataTable contexts to the Platform.
JMP Version Added: 19
dt = Open( "$SAMPLE_DATA/Big Class.jmp" );
dt << Bivariate(
Y( :height ),
X( :weight ),
Action( Distribution( Y( :height, :weight ), Histograms Only ) )
);
Apply Preset
Syntax: Apply Preset( preset ); Apply Preset( source, label, <Folder( folder {, folder2, ...} )> )
Description: Apply a previously created preset to the object, updating the options and customizations to match the saved settings.
JMP Version Added: 19
Anonymous preset
dt = Open( "$SAMPLE_DATA/Big Class.jmp" );
obj = dt << Oneway( Y( :height ), X( :sex ), t Test( 1 ) );
preset = obj << New Preset();
dt2 = Open( "$SAMPLE_DATA/Dogs.jmp" );
obj2 = dt2 << Oneway( Y( :LogHist0 ), X( :drug ) );
Wait( 1 );
obj2 << Apply Preset( preset );
Search by name
dt = Open( "$SAMPLE_DATA/Big Class.jmp" );
obj = dt << Oneway( Y( :height ), X( :sex ) );
Wait( 1 );
obj << Apply Preset( "Sample Presets", "Compare Distributions" );
Search within folder(s)
dt = Open( "$SAMPLE_DATA/Big Class.jmp" );
obj = dt << Oneway( Y( :height ), X( :sex ) );
Wait( 1 );
obj << Apply Preset( "Sample Presets", "t-Tests", Folder( "Compare Means" ) );
Copy ByGroup Script
Syntax: obj << Copy ByGroup Script
Description: Create a JSL script to produce this analysis, and put it on the clipboard.
JMP Version Added: 19
dt = Open( "$SAMPLE_DATA/Big Class.jmp" );
dt << New Column( "_bycol",
Character,
Nominal,
set values( Repeat( {"A", "B"}, N Rows( dt ) )[1 :: N Rows( dt )] )
);
obj = XGBoost( Y( :Weight ), X( :Height ), Fit );
obj[1] << Copy ByGroup Script;
Copy Script
Syntax: obj << Copy Script
Description: Create a JSL script to produce this analysis, and put it on the clipboard.
JMP Version Added: 19
dt = Open( "$SAMPLE_DATA/Big Class.jmp" );
obj = XGBoost( Y( :Weight ), X( :Height ), Fit );
obj << Copy Script;
Get By Levels
Syntax: obj << Get By Levels
Description: Returns an associative array mapping the by group columns to their values.
JMP Version Added: 19
dt = Open( "$SAMPLE_DATA/Big Class.jmp" );
biv = dt << Bivariate( X( :height ), Y( :weight ), By( :sex ) );
biv << Get By Levels;
Get ByGroup Script
Syntax: obj << Get ByGroup Script
Description: Creates a script (JSL) to produce this analysis and returns it as an expression.
JMP Version Added: 19
dt = Open( "$SAMPLE_DATA/Big Class.jmp" );
dt << New Column( "_bycol",
Character,
Nominal,
set values( Repeat( {"A", "B"}, N Rows( dt ) )[1 :: N Rows( dt )] )
);
obj = XGBoost( Y( :Weight ), X( :Height ), Fit );
t = obj[1] << Get ByGroup Script;
Show( t );
Get Container
Syntax: obj << Get Container
Description: Returns a reference to the container box that holds the content for the object.
JMP Version Added: 19
General
dt = Open( "$SAMPLE_DATA/Big Class.jmp" );
obj = XGBoost( Y( :Weight ), X( :Height ), Fit );
t = obj << Get Container;
Show( (t << XPath( "//OutlineBox" )) << Get Title );
Platform with Filter
dt = Open( "$SAMPLE_DATA/Big Class.jmp" );
gb = Graph Builder(
Show Control Panel( 0 ),
Variables( X( :height ), Y( :weight ) ),
Elements( Points( X, Y, Legend( 1 ) ), Smoother( X, Y, Legend( 2 ) ) ),
Local Data Filter(
Add Filter(
columns( :age, :sex, :height ),
Where( :age == {12, 13, 14} ),
Where( :sex == "F" ),
Where( :height >= 55 ),
Display( :age, N Items( 6 ) )
)
)
);
New Window( "platform boxes",
H List Box(
Outline Box( "Report(platform)", Report( gb ) << Get Picture ),
Outline Box( "platform << Get Container", (gb << Get Container) << Get Picture )
)
);
Get Data Table
Syntax: obj << Get Data Table
Description: Returns a reference to the data table.
JMP Version Added: 19
dt = Open( "$SAMPLE_DATA/Big Class.jmp" );
obj = XGBoost( Y( :Weight ), X( :Height ), Fit );
t = obj << Get Datatable;
Show( N Rows( t ) );
Get Script
Syntax: obj << Get Script
Description: Creates a script (JSL) to produce this analysis and returns it as an expression.
JMP Version Added: 19
dt = Open( "$SAMPLE_DATA/Big Class.jmp" );
obj = XGBoost( Y( :Weight ), X( :Height ), Fit );
t = obj << Get Script;
Show( t );
Get Script With Data Table
Syntax: obj << Get Script With Data Table
Description: Creates a script(JSL) to produce this analysis specifically referencing this data table and returns it as an expression.
JMP Version Added: 19
dt = Open( "$SAMPLE_DATA/Big Class.jmp" );
obj = XGBoost( Y( :Weight ), X( :Height ), Fit );
t = obj << Get Script With Data Table;
Show( t );
Get Timing
Syntax: obj << Get Timing
Description: Times the platform launch.
JMP Version Added: 19
dt = Open( "$SAMPLE_DATA/Big Class.jmp" );
obj = XGBoost( Y( :Weight ), X( :Height ), Fit );
t = obj << Get Timing;
Show( t );
Get Web Support
Syntax: obj << Get Web Support
Description: Return a number indicating the level of Interactive HTML support for the display object. 1 means some or all elements are supported. 0 means no support.
JMP Version Added: 19
dt = Open( "$SAMPLE_DATA/Big Class.jmp" );
obj = dt << Bivariate( Y( :Weight ), X( :Height ) );
s = obj << Get Web Support();
Show( s );
Get Where Expr
Syntax: obj << Get Where Expr
Description: Returns the Where expression for the data subset, if the platform was launched with By() or Where(). Otherwise, returns Empty()
JMP Version Added: 19
dt = Open( "$SAMPLE_DATA/Big Class.jmp" );
biv = dt << Bivariate( X( :height ), Y( :weight ), By( :sex ) );
biv2 = dt << Bivariate( X( :height ), Y( :weight ), Where( :age < 14 & :height > 60 ) );
Show( biv[1] << Get Where Expr, biv2 << Get Where Expr );
Ignore Platform Preferences
Syntax: Ignore Platform Preferences( state=0|1 )
Description: Ignores the current settings of the platform's preferences. The message is ignored when sent to the platform after creation.
JMP Version Added: 19
dt = Open( "$SAMPLE_DATA/Big Class.jmp" );
dt << Bivariate(
Ignore Platform Preferences( 1 ),
Y( :height ),
X( :weight ),
Action( Distribution( Y( :height, :weight ), Histograms Only ) )
);
New JSL Preset
Syntax: New JSL Preset( preset )
Description: For testing purposes, create a preset directly from a JSL expression. Like <<New Preset, it will return a Platform Preset that can be applied using <<Apply Preset. But it allows you to specify the full JSL expression for the preset to test outside of normal operation. You will get an Assert on apply if the platform names do not match, but that is expected.
JMP Version Added: 19
dt = Open( "$SAMPLE_DATA/Big Class.jmp" );
obj = dt << Oneway( Y( :Height ), X( :Age ) );
preset = obj << New JSL Preset( Oneway( Y( :A ), X( :B ), Each Pair( 1 ) ) );
Wait( 1 );
obj << Apply Preset( preset );
New Preset
Syntax: obj = New Preset()
Description: Create an anonymous preset representing the options and customizations applied to the object. This object can be passed to Apply Preset to copy the settings to another object of the same type.
JMP Version Added: 19
dt = Open( "$SAMPLE_DATA/Big Class.jmp" );
obj = dt << Oneway( Y( :height ), X( :sex ), t Test( 1 ) );
preset = obj << New Preset();
Render Preset
Syntax: Render Preset( preset )
Description: For testing purposes, show the platform rerun script that would be used when applying a platform preset to the platform in the log. No changes are made to the platform.
JMP Version Added: 19
dt = Open( "$SAMPLE_DATA/Big Class.jmp" );
obj = dt << Oneway( Y( :Height ), X( :Age ) );
obj << Render Preset( Expr( Oneway( Y( :A ), X( :B ), Each Pair( 1 ) ) ) );
Report
Syntax: obj << Report;Report( obj )
Description: Returns a reference to the report object.
JMP Version Added: 19
dt = Open( "$SAMPLE_DATA/Big Class.jmp" );
obj = XGBoost( Y( :Weight ), X( :Height ), Fit );
r = obj << Report;
t = r[Outline Box( 1 )] << Get Title;
Show( t );
Save ByGroup Script to Data Table
Syntax: Save ByGroup Script to Data Table( <name>, < <<Append Suffix(0|1)>, < <<Prompt(0|1)>, < <<Replace(0|1)> );
Description: Creates a JSL script to produce this analysis, and save it as a table property in the data table. You can specify a name for the script. The Append Suffix option appends a numeric suffix to the script name, which differentiates the script from an existing script with the same name. The Prompt option prompts the user to specify a script name. The Replace option replaces an existing script with the same name.
JMP Version Added: 19
dt = Open( "$SAMPLE_DATA/Big Class.jmp" );
dt << New Column( "_bycol",
Character,
Nominal,
set values( Repeat( {"A", "B"}, N Rows( dt ) )[1 :: N Rows( dt )] )
);
obj = XGBoost( Y( :Weight ), X( :Height ), Fit );
obj[1] << Save ByGroup Script to Data Table;
Save ByGroup Script to Journal
Syntax: obj << Save ByGroup Script to Journal
Description: Create a JSL script to produce this analysis, and add a Button to the journal containing this script.
JMP Version Added: 19
dt = Open( "$SAMPLE_DATA/Big Class.jmp" );
dt << New Column( "_bycol",
Character,
Nominal,
set values( Repeat( {"A", "B"}, N Rows( dt ) )[1 :: N Rows( dt )] )
);
obj = XGBoost( Y( :Weight ), X( :Height ), Fit );
obj[1] << Save ByGroup Script to Journal;
Save ByGroup Script to Script Window
Syntax: obj << Save ByGroup Script to Script Window
Description: Create a JSL script to produce this analysis, and append it to the current Script text window.
JMP Version Added: 19
dt = Open( "$SAMPLE_DATA/Big Class.jmp" );
dt << New Column( "_bycol",
Character,
Nominal,
set values( Repeat( {"A", "B"}, N Rows( dt ) )[1 :: N Rows( dt )] )
);
obj = XGBoost( Y( :Weight ), X( :Height ), Fit );
obj[1] << Save ByGroup Script to Script Window;
Save Script for All Objects
Syntax: obj << Save Script for All Objects
Description: Creates a script for all report objects in the window and appends it to the current Script window. This option is useful when you have multiple reports in the window.
JMP Version Added: 19
dt = Open( "$SAMPLE_DATA/Big Class.jmp" );
obj = XGBoost( Y( :Weight ), X( :Height ), Fit );
obj << Save Script for All Objects;
Save Script for All Objects To Data Table
Syntax: obj << Save Script for All Objects To Data Table( <name> )
Description: Saves a script for all report objects to the current data table. This option is useful when you have multiple reports in the window. The script is named after the first platform unless you specify the script name in quotes.
JMP Version Added: 19
Example 1
dt = Open( "$SAMPLE_DATA/Big Class.jmp" );
dt << New Column( "_bycol",
Character,
Nominal,
set values( Repeat( {"A", "B"}, N Rows( dt ) )[1 :: N Rows( dt )] )
);
obj = XGBoost( Y( :Weight ), X( :Height ), Fit );
obj[1] << Save Script for All Objects To Data Table;
Example 2
dt = Open( "$SAMPLE_DATA/Big Class.jmp" );
dt << New Column( "_bycol",
Character,
Nominal,
set values( Repeat( {"A", "B"}, N Rows( dt ) )[1 :: N Rows( dt )] )
);
obj = XGBoost( Y( :Weight ), X( :Height ), Fit );
obj[1] << Save Script for All Objects To Data Table( "My Script" );
Save Script to Data Table
Syntax: Save Script to Data Table( <name>, < <<Prompt(0|1)>, < <<Replace(0|1)> );
Description: Create a JSL script to produce this analysis, and save it as a table property in the data table.
JMP Version Added: 19
dt = Open( "$SAMPLE_DATA/Big Class.jmp" );
obj = XGBoost( Y( :Weight ), X( :Height ), Fit );
obj << Save Script to Data Table( "My Analysis", <<Prompt( 0 ), <<Replace( 0 ) );
Save Script to Journal
Syntax: obj << Save Script to Journal
Description: Create a JSL script to produce this analysis, and add a Button to the journal containing this script.
JMP Version Added: 19
dt = Open( "$SAMPLE_DATA/Big Class.jmp" );
obj = XGBoost( Y( :Weight ), X( :Height ), Fit );
obj << Save Script to Journal;
Save Script to Report
Syntax: obj << Save Script to Report
Description: Create a JSL script to produce this analysis, and show it in the report itself. Useful to preserve a printed record of what was done.
JMP Version Added: 19
dt = Open( "$SAMPLE_DATA/Big Class.jmp" );
obj = XGBoost( Y( :Weight ), X( :Height ), Fit );
obj << Save Script to Report;
Save Script to Script Window
Syntax: obj << Save Script to Script Window
Description: Create a JSL script to produce this analysis, and append it to the current Script text window.
JMP Version Added: 19
dt = Open( "$SAMPLE_DATA/Big Class.jmp" );
obj = XGBoost( Y( :Weight ), X( :Height ), Fit );
obj << Save Script to Script Window;
SendToByGroup
Syntax: SendToByGroup( {":Column == level"}, command );
Description: Sends platform commands or display customization commands to each level of a by-group.
JMP Version Added: 19
dt = Open( "$SAMPLE_DATA/Big Class.jmp" );
dt << Distribution(
By( :Sex ),
SendToByGroup(
{:sex == "F"},
Continuous Distribution( Column( :weight ), Normal Quantile Plot( 1 ) )
),
SendToByGroup( {:sex == "M"}, Continuous Distribution( Column( :weight ) ) )
);
SendToEmbeddedScriptable
Syntax: SendToEmbeddedScriptable( Dispatch( "Outline name", "Element name", command );
Description: SendToEmbeddedScriptable restores settings of embedded scriptable objects.
JMP Version Added: 19
dt = Open( "$SAMPLE_DATA/Reliability/Fan.jmp" );
dt << Life Distribution(
Y( :Time ),
Censor( :Censor ),
Censor Code( 1 ),
<<Fit Weibull,
SendToEmbeddedScriptable(
Dispatch(
{"Statistics", "Parametric Estimate - Weibull", "Profilers", "Density Profiler"},
{1, Confidence Intervals( 0 ), Term Value( Time( 6000, Lock( 0 ), Show( 1 ) ) )}
)
)
);
SendToReport
Syntax: SendToReport( Dispatch( "Outline name", "Element name", Element type, command );
Description: Send To Report is used in tandem with the Dispatch command to customize the appearance of a report.
JMP Version Added: 19
dt = Open( "$SAMPLE_DATA/Big Class.jmp" );
dt << Distribution(
Nominal Distribution( Column( :age ) ),
Continuous Distribution( Column( :weight ) ),
SendToReport( Dispatch( "age", "Distrib Nom Hist", FrameBox, {Frame Size( 178, 318 )} ) )
);
Title
Syntax: obj << Title( "new title" )
Description: Sets the title of the platform.
JMP Version Added: 19
dt = Open( "$SAMPLE_DATA/Big Class.jmp" );
obj = XGBoost( Y( :Weight ), X( :Height ), Fit );
obj << Title( "My Platform" );
Top Report
Syntax: obj << Top Report
Description: Returns a reference to the root node in the report.
JMP Version Added: 19
dt = Open( "$SAMPLE_DATA/Big Class.jmp" );
obj = XGBoost( Y( :Weight ), X( :Height ), Fit );
r = obj << Top Report;
t = r[Outline Box( 1 )] << Get Title;
Show( t );
View Web XML
Syntax: obj << View Web XML
Description: Returns the XML code that is used to create the interactive HTML report.
JMP Version Added: 19
dt = Open( "$SAMPLE_DATA/Big Class.jmp" );
obj = dt << Bivariate( Y( :Weight ), X( :Height ) );
xml = obj << View Web XML;
XGBoost Compare
Associated Constructors
XGBoost Compare
Syntax: XGBoost Compare
JMP Version Added: 19
Item Messages
AUC
Syntax: obj << AUC( state=0|1 )
Description: Shows or hides the AUROC, which is the area under the receiver operating characteristic curve. On by default.
JMP Version Added: 19
AUPRC
Syntax: obj << AUPRC( state=0|1 )
Description: Area under the Precision Recall Curve On by default.
JMP Version Added: 19
Accuracy
Syntax: obj << Accuracy( state=0|1 )
Description: Shows or hides the accuracy, which is the proportion of correct classifications. On by default.
JMP Version Added: 19
Censor
Syntax: obj << Censor( state=0|1 )
Description: Shows or hides the Censor command On by default.
JMP Version Added: 19
Concordance
Syntax: obj << Concordance( state=0|1 )
Description: Shows or hides the concordance, which is the Harrell C-Index and measures strength of sorting efficiency On by default.
JMP Version Added: 19
Correlation
Syntax: obj << Correlation( state=0|1 )
Description: Shows or hides the Pearson correlation, which is a measure of the strength of the linear relationship. On by default.
JMP Version Added: 19
F1
Syntax: obj << F1( state=0|1 )
Description: Shows or hides the F1 Score, which is the harmonic average of precision and recall. On by default.
JMP Version Added: 19
Features
Syntax: obj << Features( state=0|1 )
Description: Shows or hides the Features column. On by default.
JMP Version Added: 19
Freq
Syntax: obj << Freq( state=0|1 )
Description: Shows or hides the Freq column. On by default.
JMP Version Added: 19
H Measure
Syntax: obj << H Measure( state=0|1 )
Description: Shows or hides the H Measure, which measures proportion improvement over baseline. On by default.
JMP Version Added: 19
Hide All Models
Syntax: obj << Hide All Models
Description: Hides all models.
JMP Version Added: 19
LogLoss
Syntax: obj << LogLoss( state=0|1 )
Description: Shows or hides the logarithm of the likelihood-based loss function. On by default.
JMP Version Added: 19
MAE
Syntax: obj << MAE( state=0|1 )
Description: Shows or hides the MAE, which is the mean absolute error. On by default.
JMP Version Added: 19
MCC
Syntax: obj << MCC( state=0|1 )
Description: Shows or hides the Matthews correlation coefficient, which is the Pearson correlation for binary variables. On by default.
JMP Version Added: 19
Misclass
Syntax: obj << Misclass( state=0|1 )
Description: Shows or hides the misclassification rate, which is the proportion of incorrect classifications. On by default.
JMP Version Added: 19
Predictors
Syntax: obj << Predictors( state=0|1 )
Description: Shows or hides the Predictors column. On by default.
JMP Version Added: 19
Profit
Syntax: obj << Profit( state=0|1 )
Description: Shows or hides the expected profit. On by default.
JMP Version Added: 19
RMSE
Syntax: obj << RMSE( state=0|1 )
Description: Shows or hides the RMSE, which is the root mean square error. On by default.
JMP Version Added: 19
RSquare
Syntax: obj << RSquare( state=0|1 )
Description: Shows or hides RSquare value, which is the proportion of variability explained. On by default.
JMP Version Added: 19
Remove Hidden Models
Syntax: obj << Remove Hidden Models
Description: Removes all models for which the Show box is not checked.
JMP Version Added: 19
Remove Shown Models
Syntax: obj << Remove Shown Models
Description: Removes all models for which the Show check box is checked and shows the remaining models.
JMP Version Added: 19
Response
Syntax: obj << Response( state=0|1 )
Description: Shows or hides the Response column. On by default.
JMP Version Added: 19
Show All Models
Syntax: obj << Show All Models
Description: Shows all models.
JMP Version Added: 19
Training Metrics
Syntax: obj << Training Metrics( state=0|1 )
Description: Shows or hides all training metrics. On by default.
JMP Version Added: 19
Validation
Syntax: obj << Validation( state=0|1 )
Description: Shows or hides the Validation column. On by default.
JMP Version Added: 19
Validation Metrics
Syntax: obj << Validation Metrics( state=0|1 )
Description: Shows or hides all validation metrics. On by default.
JMP Version Added: 19
Weight
Syntax: obj << Weight( state=0|1 )
Description: Shows or hides the Weight column. On by default.
JMP Version Added: 19
XGBoost Fit
Associated Constructors
XGBoost Fit
Syntax: XGBoost Fit
JMP Version Added: 19
Item Messages
Actual by Predicted Plots
Syntax: obj << Actual by Predicted Plots( state=0|1 )
Description: Shows or hides a plot using the training data with the predicted values on the X axis and actual values on the Y axis. On by default.
JMP Version Added: 19
Autotune
Syntax: obj << Autotune
Description: Creates a fast flexible filling design within min and max parameter settings to fit n models, where n is Number of Runs.
JMP Version Added: 19
Confusion Matrices
Syntax: obj << ( fit[number] << Confusion Matrices( state=0|1 ) )
Description: Shows or hides a crosstabulation matrix of actual and predicted levels. On by default.
JMP Version Added: 19
dt = Open( "$SAMPLE_DATA/Iris.jmp" );
obj = dt << XGBoost(
Y( :Species ),
X( :Sepal length, :Sepal width, :Petal length, :Petal width ),
Fit
);
obj << (fit[1] << Confusion Matrices( 1 ));
Contour Profiler
Syntax: obj << Contour Profiler
Description: Shows or hides interactive graphs of cross-sections of the prediction function.
JMP Version Added: 19
Copy Parameters to Launch
Syntax: obj << Copy Parameters to Launch
Description: Copies the parameters from this model to the model launch section.
JMP Version Added: 19
Decision Thresholds
Syntax: obj << Decision Thresholds( state=0|1 )
Description: Shows or hides decision threshold graphs and tables. On by default.
JMP Version Added: 19
Fit Details
Syntax: obj << Fit Details( state=0|1 )
Description: Shows or hides the statistics for the fitted model. On by default.
JMP Version Added: 19
Generate Python Code
Syntax: obj << Generate Python Code
Description: Creates Python code for training and scoring.
JMP Version Added: 19
Importances
Syntax: obj << Importances( state=0|1 )
Description: Shows or hides the importance statistics for each predictor. On by default.
JMP Version Added: 19
Lift Curves
Syntax: obj << Lift Curves( state=0|1 )
Description: Shows or hides the Lift Curve plot. A lift curve plots the lift versus the portion of the observations and provides another view of the predictive ability of a model.
JMP Version Added: 19
Number of Design Points
Syntax: obj << Number of Design Points( number=10 )
Description: Specifies the number of tuning design runs to perform. If you have a large problem, keep this value relatively small. "10" by default.
JMP Version Added: 19
dt = Open( "$SAMPLE_DATA/Big Class.jmp" );
XGBoost( Y( :Weight ), X( :Height ), Fit( Number of Design Points( 10 ) ) );
Number of Inner Folds
Syntax: obj << Number of Inner Folds( number=2 )
Description: Specifies the number of nested inner folds used during the autotune process. "2" by default.
JMP Version Added: 19
dt = Open( "$SAMPLE_DATA/Big Class.jmp" );
XGBoost( Y( :Weight ), X( :Height ), Fit( Number of Inner Folds( 2 ) ) );
Objective
Syntax: obj << Objective( "reg:squarederror"|"binary:logistic"|"binary:hinge"|"count:poisson"|"multi:softprob"|"rank:pairwise"|"rank:ndcg"|"rank:map"|"reg:gamma"|"reg:logistic"|"reg:pseudohubererror"|"reg:squaredlogerror"|"reg:tweedie"|"survival:cox"="reg:squarederror" )
Description: Specifies the function to be optimized for model fitting. The function must be consistent with the modeling type of the response. "reg:squarederror" by default.
JMP Version Added: 19
dt = Open( "$SAMPLE_DATA/Big Class.jmp" );
XGBoost( Y( :Weight ), X( :Height ), objective( "reg:squarederror" ) );
Precision Recall Curves
Syntax: obj << Precision Recall Curves( state=0|1 )
Description: Plots the trade-off between precision and recall for different classification thresholds. It is preferred in scenarios where class imbalances exist.
JMP Version Added: 19
Profiler
Syntax: obj << Profiler
Description: Shows or hides the prediction profiler, which is used to graphically explore the prediction equation by slicing it one factor at a time. The prediction profiler contains features for optimization.
JMP Version Added: 19
Publish Prediction Formula
Syntax: obj << Publish Prediction Formula
Description: Creates prediction formulas and saves them as formula column scripts in the Formula Depot platform.
JMP Version Added: 19
ROC Curves
Syntax: obj << ROC Curves( state=0|1 )
Description: Shows or hides the Receiver Operating Characteristic (ROC) curve for each level of the response variable. The ROC curve is a plot of sensitivity versus (1 - specificity).
JMP Version Added: 19
Remove All But This Fit
Syntax: obj << ( fit[number] << Remove All But This Fit )
Description: Removes the reports and plots for all models except this one.
JMP Version Added: 19
dt = Open( "$SAMPLE_DATA/Iris.jmp" );
obj = dt << XGBoost(
Y( :Species ),
X( :Sepal length, :Sepal width, :Petal length, :Petal width ),
Fit
);
Wait( 2 );
obj << (Fit[1] << Remove All But This Fit);
Remove Fit
Syntax: obj << ( fit[number] << Remove Fit )
Description: Removes the entire model report.
JMP Version Added: 19
dt = Open( "$SAMPLE_DATA/Iris.jmp" );
obj = dt << XGBoost(
Y( :Species ),
X( :Sepal length, :Sepal width, :Petal length, :Petal width ),
Fit
);
Wait( 2 );
obj << (Fit[1] << Remove Fit);
Save Predicteds
Syntax: obj << Save Predicteds
Description: Saves the predicted values in a new column in the data table.
JMP Version Added: 19
Save Prediction Formula
Syntax: obj << Save Prediction Formula
Description: Saves the prediction formula in a new column in the data table. Calculations can be slow for large models.
JMP Version Added: 19
Save SHAPs
Syntax: obj << Save SHAPs
Description: Saves Shapley values to the data table. These values break down predictions into components for each predictor.
JMP Version Added: 19
Surface Profiler
Syntax: obj << Surface Profiler
Description: Shows or hides interactive graphs of cross-sections of the prediction function.
JMP Version Added: 19
Tree Details
Syntax: obj << Tree Details( state=0|1 )
Description: Shows or hides the breakdown of each tree split.
JMP Version Added: 19
Tuning Design Table
Syntax: Tuning Design Table( "table name" )
Description: Specifies the name of an open JMP data table of parameter settings used to fit a series of models. The columns of this table must exactly match parameter names, and each row must contain values of these parameters to use for that model fit. Parameters that are not specified are set to their values from this dialog.
JMP Version Added: 19
alpha
Syntax: obj << alpha( number=0.0 )
Description: Specifies the L1 regularization term on weights. Increasing this value makes the model more conservative. This value must be nonnegative. "0.0" by default.
JMP Version Added: 19
dt = Open( "$SAMPLE_DATA/Big Class.jmp" );
XGBoost( Y( :Weight ), X( :Height ), Fit( alpha( 0.0 ) ) );
alpha_max
Syntax: obj << alpha_max( number=0.5 )
Description: Specifies the maximum L1 regularization term on weights. Increasing this value makes the model more conservative. This value must be nonnegative. "0.5" by default.
JMP Version Added: 19
dt = Open( "$SAMPLE_DATA/Big Class.jmp" );
XGBoost( Y( :Weight ), X( :Height ), Fit( alpha_max( 2.0 ) ) );
alpha_min
Syntax: obj << alpha_min( number=0.0 )
Description: Specifies the minimum L1 regularization term on weights. Increasing this value makes the model more conservative. This value must be nonnegative. "0.0" by default.
JMP Version Added: 19
dt = Open( "$SAMPLE_DATA/Big Class.jmp" );
XGBoost( Y( :Weight ), X( :Height ), Fit( alpha_min( 0.0 ) ) );
base_score
Syntax: obj << base_score( number=0.5 )
Description: Specifies the initial prediction score of all instances, which is the global bias. The mean of y is typically a good choice. "0.5" by default.
JMP Version Added: 19
dt = Open( "$SAMPLE_DATA/Big Class.jmp" );
XGBoost( Y( :Weight ), X( :Height ), Fit( base_score( 0.5 ) ) );
booster
Syntax: obj << booster( "gbtree"|"gblinear"|"dart"="gbtree" )
Description: Specifies which booster to use. "gbtree" by default.
JMP Version Added: 19
dt = Open( "$SAMPLE_DATA/Big Class.jmp" );
XGBoost( Y( :Weight ), X( :Height ), Fit( booster( "gbtree" ) ) );
colsample_bylevel
Syntax: obj << colsample_bylevel( number=1.0 )
Description: Specifies the proportion of columns to sample for each level. Sampling occurs once for every new depth level reached in a tree. "1.0" by default.
JMP Version Added: 19
dt = Open( "$SAMPLE_DATA/Big Class.jmp" );
XGBoost( Y( :Weight ), X( :Height ), Fit( colsample_bylevel( 1.0 ) ) );
colsample_bynode
Syntax: obj << colsample_bynode( number=1.0 )
Description: Specifies the proportion of columns to sample for each node (split). Sampling occurs once every time a new split is evaluated. "1.0" by default.
JMP Version Added: 19
dt = Open( "$SAMPLE_DATA/Big Class.jmp" );
XGBoost( Y( :Weight ), X( :Height ), Fit( colsample_bynode( 1.0 ) ) );
colsample_bytree
Syntax: obj << colsample_bytree( number=1.0 )
Description: Specifies the proportion of columns to sample when constructing each tree. Sampling occurs once for each tree. This value must be between 0 and 1. "1.0" by default.
JMP Version Added: 19
dt = Open( "$SAMPLE_DATA/Big Class.jmp" );
XGBoost( Y( :Weight ), X( :Height ), Fit( colsample_bytree( 1.0 ) ) );
colsample_bytree_max
Syntax: obj << colsample_bytree_max( number=1.0 )
Description: Specifies the maximum proportion of columns to sample when constructing each tree. Sampling occurs once for each tree. This value must be between 0 and 1. "1.0" by default.
JMP Version Added: 19
dt = Open( "$SAMPLE_DATA/Big Class.jmp" );
XGBoost( Y( :Weight ), X( :Height ), Fit( colsample_bytree_max( 1.0 ) ) );
colsample_bytree_min
Syntax: obj << colsample_bytree_min( number=0.5 )
Description: Specifies the minimum proportion of columns to sample when constructing each tree. Sampling occurs once for each tree. This value must be between 0 and 1. "0.5" by default.
JMP Version Added: 19
dt = Open( "$SAMPLE_DATA/Big Class.jmp" );
XGBoost( Y( :Weight ), X( :Height ), Fit( colsample_bytree_min( 0.3 ) ) );
eval_metric
Syntax: obj << eval_metric( text )
Description: Specifies the metric shown in the iteration history plot but does not affect the actual model fit. Leave this value blank for the default metric corresponding to the objective function, or specify one of the following: rmse, rmsle, mae, logloss, error, error@t, merror, auc, aucpr, ndcg, map, ndcg@n, map@n, ndcg-, map-, ndcg@n-, map@n-, poisson-nloglik, gamma-nloglik, cox-nloglik, gamma-deviance, tweedie-nloglik.
JMP Version Added: 19
dt = Open( "$SAMPLE_DATA/Big Class.jmp" );
XGBoost( Y( :Weight ), X( :Height ), Fit( eval_metric( rmse ) ) );
feature_selector
Syntax: obj << feature_selector( "cyclic"|"shuffle"|"greedy"|"thrifty"="cyclic" )
Description: Specifies the feature selection and ordering method for the linear booster. "cyclic" by default.
JMP Version Added: 19
dt = Open( "$SAMPLE_DATA/Big Class.jmp" );
XGBoost(
Y( :Weight ),
X( :Height ),
Booster( "gblinear" ),
Fit( feature_selector( "cyclic" ) )
);
gamma
Syntax: obj << gamma( number=0.0 )
Description: Specifies the minimum loss reduction required to make a further partition on a leaf node of the tree. "0.0" by default.
JMP Version Added: 19
dt = Open( "$SAMPLE_DATA/Big Class.jmp" );
XGBoost( Y( :Weight ), X( :Height ), Fit( Gamma( 0.0 ) ) );
grow_policy
Syntax: obj << grow_policy( "depthwise"|"lossguide"="depthwise" )
Description: Specifies the method used to add new nodes to trees. Currently, this option applies only when tree_method=hist. "depthwise" by default.
JMP Version Added: 19
dt = Open( "$SAMPLE_DATA/Big Class.jmp" );
XGBoost( Y( :Weight ), X( :Height ), Fit( grow_policy( "depthwise" ) ) );
interaction_constraints
Syntax: obj << interaction_constraints( text )
Description: Specifies feature interaction constraints as a nested list of feature indices using brackets. Features grouped together can interact only with each other.
JMP Version Added: 19
dt = Open( "$SAMPLE_DATA/Big Class.jmp" );
:Age << Set Modeling Type( "Continuous" );
XGBoost( Y( :Weight ), X( :Age, :Height ), Fit( interaction_constraints( "[[0,1]]" ) ) );
iterations
Syntax: obj << iterations( number=30 )
Description: Specifies the number of boosting iterations. "30" by default.
JMP Version Added: 19
dt = Open( "$SAMPLE_DATA/Big Class.jmp" );
XGBoost( Y( :Weight ), X( :Height ), Fit( iterations( 100 ) ) );
iterations_max
Syntax: obj << iterations_max( number=100 )
Description: Specifies the maximum number of boosting iterations. "100" by default.
JMP Version Added: 19
dt = Open( "$SAMPLE_DATA/Big Class.jmp" );
XGBoost( Y( :Weight ), X( :Height ), Fit( iterations_max( 300 ) ) );
iterations_min
Syntax: obj << iterations_min( number=20 )
Description: Specifies the minimum number of boosting iterations. "20" by default.
JMP Version Added: 19
dt = Open( "$SAMPLE_DATA/Big Class.jmp" );
XGBoost( Y( :Weight ), X( :Height ), Fit( iterations_min( 20 ) ) );
lambda
Syntax: obj << lambda( number=1.0 )
Description: Specifies the L2 regularization term on weights. Increasing this value makes the model more conservative. This value must be nonnegative. "1.0" by default.
JMP Version Added: 19
dt = Open( "$SAMPLE_DATA/Big Class.jmp" );
XGBoost( Y( :Weight ), X( :Height ), Fit( lambda( 1.0 ) ) );
lambda_max
Syntax: obj << lambda_max( number=2.0 )
Description: Specifies the maximum L2 regularization term on weights. Increasing this value makes the model more conservative. This value must be nonnegative. "2.0" by default.
JMP Version Added: 19
dt = Open( "$SAMPLE_DATA/Big Class.jmp" );
XGBoost( Y( :Weight ), X( :Height ), Fit( lambda_max( 2.0 ) ) );
lambda_min
Syntax: obj << lambda_min( number=0.0 )
Description: Specifies the minimum L2 regularization term on weights. Increasing this value makes the model more conservative. This value must be nonnegative. "0.0" by default.
JMP Version Added: 19
dt = Open( "$SAMPLE_DATA/Big Class.jmp" );
XGBoost( Y( :Weight ), X( :Height ), Fit( lambda_min( 0.0 ) ) );
learning_rate
Syntax: obj << learning_rate( number=0.3 )
Description: Specifies the learning rate. Smaller learning rates tend to fit better but require more iterations to converge, whereas larger learning rates fit faster. "0.3" by default.
JMP Version Added: 19
dt = Open( "$SAMPLE_DATA/Big Class.jmp" );
XGBoost( Y( :Weight ), X( :Height ), Fit( learning_rate( 0.3 ) ) );
learning_rate_max
Syntax: obj << learning_rate_max( number=0.4 )
Description: Specifies the maximum learning rate. Smaller learning rates tend to fit better but require more iterations to converge, whereas larger learning rates fit faster. "0.4" by default.
JMP Version Added: 19
dt = Open( "$SAMPLE_DATA/Big Class.jmp" );
XGBoost( Y( :Weight ), X( :Height ), Fit( learning_rate_max( 0.4 ) ) );
learning_rate_min
Syntax: obj << learning_rate_min( number=0.05 )
Description: Specifies the minimum learning rate. Smaller learning rates tend to fit better but require more iterations to converge, whereas larger learning rates fit faster. "0.05" by default.
JMP Version Added: 19
dt = Open( "$SAMPLE_DATA/Big Class.jmp" );
XGBoost( Y( :Weight ), X( :Height ), Fit( learning_rate_min( 0.05 ) ) );
max_bin
Syntax: obj << max_bin( number=256 )
Description: Specifies the maximum number of discrete bins into which to bucket continuous features. This option applies only for tree_method=hist. "256" by default.
JMP Version Added: 19
dt = Open( "$SAMPLE_DATA/Big Class.jmp" );
XGBoost( Y( :Weight ), X( :Height ), Fit( max_bin( 256 ) ) );
max_delta_step
Syntax: obj << max_delta_step( number=0.0 )
Description: Specifies the maximum delta step that each leaf output can take. "0.0" by default.
JMP Version Added: 19
dt = Open( "$SAMPLE_DATA/Big Class.jmp" );
XGBoost( Y( :Weight ), X( :Height ), Fit( max_delta_step( 0.0 ) ) );
max_depth
Syntax: obj << max_depth( number=6 )
Description: Specifies the maximum depth of the tree. This value must be an integer. Complexity increases as depth increases. Models with larger max_depth have a higher risk of overfitting. "6" by default.
JMP Version Added: 19
dt = Open( "$SAMPLE_DATA/Big Class.jmp" );
XGBoost( Y( :Weight ), X( :Height ), Fit( max_depth( 6 ) ) );
max_depth_max
Syntax: obj << max_depth_max( number=8 )
Description: Specifies the maximum depth of tree maximum. This value must be an integer. Complexity increases as depth increases. Models with depths of 2^depth and larger have higher risk of overfitting. "8" by default.
JMP Version Added: 19
dt = Open( "$SAMPLE_DATA/Big Class.jmp" );
XGBoost( Y( :Weight ), X( :Height ), Fit( max_depth_max( 9 ) ) );
max_depth_min
Syntax: obj << max_depth_min( number=1 )
Description: Specifies the maximum depth of tree minimum. This value must be an integer. Complexity increases as depth increases. Models with depths of 2^depth and larger have higher risk of overfitting. "1" by default.
JMP Version Added: 19
dt = Open( "$SAMPLE_DATA/Big Class.jmp" );
XGBoost( Y( :Weight ), X( :Height ), Fit( max_depth_min( 3 ) ) );
max_leaves
Syntax: obj << max_leaves( number=0 )
Description: Specifies the maximum number of nodes to be added. This option applies only for grow_policy=lossguide. "0" by default.
JMP Version Added: 19
dt = Open( "$SAMPLE_DATA/Big Class.jmp" );
XGBoost( Y( :Weight ), X( :Height ), Fit( max_leaves( 0 ) ) );
min_child_weight
Syntax: obj << min_child_weight( number=1.0 )
Description: Specifies the minimum sum of instance weight (Hessian) needed in a child. This value is the minimum size of each leaf. "1.0" by default.
JMP Version Added: 19
dt = Open( "$SAMPLE_DATA/Big Class.jmp" );
XGBoost( Y( :Weight ), X( :Height ), Fit( min_child_weight( 1.0 ) ) );
min_child_weight_max
Syntax: obj << min_child_weight_max( number=3.0 )
Description: Specifies the maximum sum of instance weight (Hessian) needed in a child. This value is the maximum size of each leaf. "3.0" by default.
JMP Version Added: 19
dt = Open( "$SAMPLE_DATA/Big Class.jmp" );
XGBoost( Y( :Weight ), X( :Height ), Fit( min_child_weight_max( 10.0 ) ) );
min_child_weight_min
Syntax: obj << min_child_weight_min( number=1.0 )
Description: Specifies the minimum sum of instance weight (Hessian) needed in a child. This value is the minimum size of each leaf. "1.0" by default.
JMP Version Added: 19
dt = Open( "$SAMPLE_DATA/Big Class.jmp" );
XGBoost( Y( :Weight ), X( :Height ), Fit( min_child_weight_min( 1.0 ) ) );
monotone_constraints
Syntax: obj << monotone_constraints( text )
Description: Specifies monotonicity constraints for each feature. The constraints must be specified using a comma-separated list of values within parentheses, where -1 indicates negative, 1 indicates positive, and 0 indicates no constraint.
JMP Version Added: 19
dt = Open( "$SAMPLE_DATA/Big Class.jmp" );
:Age << Set Modeling Type( "Continuous" );
XGBoost( Y( :Weight ), X( :Age, :Height ), Fit( monotone_constraints( "(1,1)" ) ) );
normalize_type
Syntax: obj << normalize_type( "tree"|"forest"="tree" )
Description: Specifies the type of normalization algorithm for the DART booster. "tree" by default.
JMP Version Added: 19
dt = Open( "$SAMPLE_DATA/Big Class.jmp" );
XGBoost( Y( :Weight ), X( :Height ), Booster( "dart" ), Fit( normalize_type( "tree" ) ) );
nthread
Syntax: obj << nthread( number=0 )
Description: Specifies the number of parallel threads used to run XGBoost. By default, all available threads are used. "0" by default.
JMP Version Added: 19
dt = Open( "$SAMPLE_DATA/Big Class.jmp" );
XGBoost( Y( :Weight ), X( :Height ), Fit( nthread( 8 ) ) );
num_parallel_tree
Syntax: obj << num_parallel_tree( number=1 )
Description: Specifies the number of boosted trees to grow in parallel. Then the results are averaged. "1" by default.
JMP Version Added: 19
dt = Open( "$SAMPLE_DATA/Big Class.jmp" );
XGBoost( Y( :Weight ), X( :Height ), Fit( num_parallel_tree( 1 ) ) );
one_drop
Syntax: obj << one_drop( number=0 )
Description: When this flag is enabled in the DART booster, at least one tree is always dropped during the dropout. "0" by default.
JMP Version Added: 19
dt = Open( "$SAMPLE_DATA/Big Class.jmp" );
XGBoost( Y( :Weight ), X( :Height ), Fit( booster( "dart" ), one_drop( 0 ) ) );
predictor
Syntax: obj << predictor( "auto"|"cpu_predictor"|"gpu_predictor"="auto" )
Description: Specifies the type of predictor algorithm. "auto" by default.
JMP Version Added: 19
dt = Open( "$SAMPLE_DATA/Big Class.jmp" );
XGBoost( Y( :Weight ), X( :Height ), Fit( predictor( "cpu_predictor" ) ) );
process_type
Syntax: obj << process_type( "default"|"update"="default" )
Description: Specifies the type of boosting process to run. "default" by default.
JMP Version Added: 19
dt = Open( "$SAMPLE_DATA/Big Class.jmp" );
XGBoost( Y( :Weight ), X( :Height ), Fit( process_type( "default" ) ) );
rate_drop
Syntax: obj << rate_drop( number=0.0 )
Description: Specifies the dropout rate for the DART booster. "0.0" by default.
JMP Version Added: 19
dt = Open( "$SAMPLE_DATA/Big Class.jmp" );
XGBoost( Y( :Weight ), X( :Height ), Fit( booster( "dart" ), rate_drop( 0.0 ) ) );
refresh_leaf
Syntax: obj << refresh_leaf( number=1 )
Description: Specifies the parameter of the refresh updater. If set to 1, leaves and nodes updated. If set to 0, only nodes are updated. "1" by default.
JMP Version Added: 19
dt = Open( "$SAMPLE_DATA/Big Class.jmp" );
XGBoost( Y( :Weight ), X( :Height ), Fit( refresh_leaf( 1 ) ) );
sample_type
Syntax: obj << sample_type( "uniform"|"weighted"="uniform" )
Description: Specifies the type of sampling algorithm for the DART booster. "uniform" by default.
JMP Version Added: 19
dt = Open( "$SAMPLE_DATA/Big Class.jmp" );
XGBoost( Y( :Weight ), X( :Height ), Booster( "dart" ), Fit( sample_type( "uniform" ) ) );
scale_pos_weight
Syntax: obj << scale_pos_weight( number=1.0 )
Description: Specifies the balance of positive and negative weights, which are useful for unbalanced classes. A typical value to consider is sum(negative instances) / sum(positive instances). "1.0" by default.
JMP Version Added: 19
dt = Open( "$SAMPLE_DATA/Big Class.jmp" );
XGBoost( Y( :Weight ), X( :Height ), Fit( scale_posweight( 1.0 ) ) );
seed
Syntax: obj << seed( number=0 )
Description: Specifies the seed for the random number generator. Set this value for reproducibility of the results. "0" by default.
JMP Version Added: 19
dt = Open( "$SAMPLE_DATA/Big Class.jmp" );
XGBoost( Y( :Weight ), X( :Height ), Fit( seed( 0 ) ) );
sketch_eps
Syntax: obj << sketch_eps( number=0.03 )
Description: Used only for tree_method=approx, this value approximately translates into (1 / sketch_eps) = number of bins. "0.03" by default.
JMP Version Added: 19
dt = Open( "$SAMPLE_DATA/Big Class.jmp" );
XGBoost( Y( :Weight ), X( :Height ), Fit( sketch_eps( 0.03 ) ) );
skip_drop
Syntax: obj << skip_drop( number=0.0 )
Description: Specifies the probability of skipping the dropout procedure during a DART boosting iteration. "0.0" by default.
JMP Version Added: 19
dt = Open( "$SAMPLE_DATA/Big Class.jmp" );
XGBoost( Y( :Weight ), X( :Height ), Fit( booster( "dart" ), skip_drop( 0.0 ) ) );
subsample
Syntax: obj << subsample( number=1.0 )
Description: Specifies the proportion of rows to sample during each iteration. This value must be between 0 and 1. This is a type of bagging. "1.0" by default.
JMP Version Added: 19
dt = Open( "$SAMPLE_DATA/Big Class.jmp" );
XGBoost( Y( :Weight ), X( :Height ), Fit( subsample( 1.0 ) ) );
subsample_max
Syntax: obj << subsample_max( number=1.0 )
Description: Specifies the maximum proportion of rows to sample during each iteration. This value must be between 0 and 1. This is a type of bagging. "1.0" by default.
JMP Version Added: 19
dt = Open( "$SAMPLE_DATA/Big Class.jmp" );
XGBoost( Y( :Weight ), X( :Height ), Fit( subsample_max( 1.0 ) ) );
subsample_min
Syntax: obj << subsample_min( number=0.5 )
Description: Specifies the minimum proportion of rows to sample during each iteration. This value must be between 0 and 1. This is a type of bagging. "0.5" by default.
JMP Version Added: 19
dt = Open( "$SAMPLE_DATA/Big Class.jmp" );
XGBoost( Y( :Weight ), X( :Height ), Fit( subsample_min( 0.3 ) ) );
top_k
Syntax: obj << top_k( number=256 )
Description: Specifies the number of top features to select in greedy and thrifty feature selector. This option applies only for the gblinear booster. "256" by default.
JMP Version Added: 19
dt = Open( "$SAMPLE_DATA/Big Class.jmp" );
XGBoost( Y( :Weight ), X( :Height ), Fit( booster( "gblinear" ), top_k( 0 ) ) );
tree_method
Syntax: obj << tree_method( "auto"|"exact"|"approx"|"hist"|"gpu_exact"|"gpu_hist"="auto" )
Description: Specifies the tree construction algorithm used in XGBoost. "auto" by default.
JMP Version Added: 19
dt = Open( "$SAMPLE_DATA/Big Class.jmp" );
XGBoost( Y( :Weight ), X( :Height ), Fit( tree_method( "auto" ) ) );
tweedie_variance_power
Syntax: obj << tweedie_variance_power( number=1.5 )
Description: Specifies the power of the Tweedie distribution. This value must be between 1 and 2. This option applies only for objective=reg:tweedie. "1.5" by default.
JMP Version Added: 19
dt = Open( "$SAMPLE_DATA/Big Class.jmp" );
XGBoost(
Y( :Weight ),
X( :Height ),
Fit( objective( "reg:tweedie" ), tweedie_variance_power( 1.5 ) )
);
updater
Syntax: obj << updater( text )
Description: Specifies the tree updater to run for the gbtree booster. Specify one of the following: grow_colmaker, distcol, grow_histmaker, grow_local_histmaker, grow_skmaker, sync, refresh, prune. For the gblinear booster, specify either shotgun or coord_descent.
JMP Version Added: 19
dt = Open( "$SAMPLE_DATA/Big Class.jmp" );
XGBoost( Y( :Weight ), X( :Height ), Fit( updater( "grow_colmaker" ) ) );