Naive Bayes
Associated Constructors
Naive Bayes
Syntax: Naive Bayes( Y( column ), X( columns ), Method( "Naive Bayes" ) )
Description: Predicts group membership for a categorical variable based on the closeness of its predictor values to the predictor values for each group.
dt = Open( "$SAMPLE_DATA/Iris.jmp" );
obj = dt << Naive Bayes(
Y( :Species ),
X( :Sepal length, :Sepal width, :Petal length, :Petal width )
);
Columns
By
Syntax: obj = Naive Bayes(...<By( column(s) )>...)
Description: Performs a separate analysis for each level of the specified column.
JMP Version Added: 14
dt = Open( "$SAMPLE_DATA/Iris.jmp" );
dt << New Column( "_bycol",
Character,
Nominal,
set values( Repeat( {"A", "B"}, N Rows( dt ) )[1 :: N Rows( dt )] )
);
obj = dt << Naive Bayes(
Y( :Species ),
X( :Sepal length, :Sepal width, :Petal length, :Petal width ),
By( _bycol )
);
Factor
Syntax: obj = Naive Bayes(...Factor( column(s) )...)
Description: Specifies the categorical or continuous predictor columns.
JMP Version Added: 14
dt = Open( "$SAMPLE_DATA/Iris.jmp" );
obj = dt << Naive Bayes(
Y( :Species ),
X( :Sepal length, :Sepal width, :Petal length, :Petal width )
);
Freq
Syntax: obj = Naive Bayes(...<Freq( column )>...)
Description: Specifies a column whose values assign a frequency to each row for the analysis.
JMP Version Added: 14
dt = Open( "$SAMPLE_DATA/Quality Control/Failure3Freq.jmp" );
obj = dt << Naive Bayes(
Y( :clean ),
X(
:contamination, :corrosion, :doping, :metallization, :miscellaneous, :oxide defect,
:silicon defect
),
Freq( :SampleSize )
);
Response
Syntax: obj = Naive Bayes(...Response( column )...)
Description: Specifies the categorical response column whose values represent the classes of interest.
JMP Version Added: 14
dt = Open( "$SAMPLE_DATA/Iris.jmp" );
obj = dt << Naive Bayes(
Y( :Species ),
X( :Sepal length, :Sepal width, :Petal length, :Petal width )
);
Validation
Syntax: obj = Naive Bayes(...<Validation( column )>...)
Description: Specifies a numeric column that defines the validation sets. This column should contain at most three distinct values.
JMP Version Added: 14
dt = Open( "$SAMPLE_DATA/Diabetes.jmp" );
obj = dt << Naive Bayes(
Y( :Y Binary ),
X( :Age, :Gender, :BMI ),
Validation( :Validation )
);
Weight
Syntax: obj = Naive Bayes(...<Weight( column )>...)
Description: Specifies a column whose values assign a weight to each row for the analysis.
JMP Version Added: 14
dt = Open( "$SAMPLE_DATA/Quality Control/Failure3Freq.jmp" );
obj = dt << Naive Bayes(
Y( :clean ),
X(
:contamination, :corrosion, :doping, :metallization, :miscellaneous, :oxide defect,
:silicon defect
),
Weight( :SampleSize )
);
X
Syntax: obj = Naive Bayes(...X( column(s) )...)
Description: Specifies the categorical or continuous predictor columns.
JMP Version Added: 14
dt = Open( "$SAMPLE_DATA/Iris.jmp" );
obj = dt << Naive Bayes(
Y( :Species ),
X( :Sepal length, :Sepal width, :Petal length, :Petal width )
);
Y
Syntax: obj = Naive Bayes(...Y( column )...)
Description: Specifies the categorical response column whose values represent the classes of interest.
JMP Version Added: 14
dt = Open( "$SAMPLE_DATA/Iris.jmp" );
obj = dt << Naive Bayes(
Y( :Species ),
X( :Sepal length, :Sepal width, :Petal length, :Petal width )
);
Item Messages
Get Measures
Syntax: obj << Get Measures
Description: Returns summary measures of fit from the model.
JMP Version Added: 16
dt = Open( "$SAMPLE_DATA/Iris.jmp" );
obj = dt << Naive Bayes(
Y( :Species ),
X( :Sepal length, :Sepal width, :Petal length, :Petal width )
);
obj << Get Measures;
Get Probability Formulas
Syntax: obj << Get Probability Formulas
Description: Returns a script to create probability formulas.
JMP Version Added: 14
dt = Open( "$SAMPLE_DATA/Iris.jmp" );
obj = dt << Naive Bayes(
Y( :Species ),
X( :Sepal length, :Sepal width, :Petal length, :Petal width )
);
obj << Get Probability Formulas;
Lift Curve
Syntax: obj << Lift Curve( state=0|1 ) )
Description: Shows or hides the Lift Curve plot. A lift curve plots the lift versus the portion of the observations and provides another view of the predictive ability of a model. If you used validation, a plot is shown for each of the training, validation, and test sets.
JMP Version Added: 14
dt = Open( "$SAMPLE_DATA/Iris.jmp" );
obj = dt << Naive Bayes(
Y( :Species ),
X( :Sepal length, :Sepal width, :Petal length, :Petal width ),
ROC Curve( 0 )
);
obj << Lift Curve( 1 );
Precision Recall Curve
Syntax: obj << Precision Recall Curve( state=0|1 )
Description: Shows or hides the Precision-Recall Curve plot that contains a curve for each level of the response variable. A precision-recall curve plots the precision values against the recall values at a variety of thresholds. If you used validation, a plot is shown for each of the training, validation, and test sets.
JMP Version Added: 14
dt = Open( "$SAMPLE_DATA/Iris.jmp" );
obj = dt << Naive Bayes(
Y( :Species ),
X( :Sepal length, :Sepal width, :Petal length, :Petal width )
);
obj << Precision Recall Curve( 1 );
Prior Bias
Syntax: obj = Naive Bayes(...Prior Bias( fraction=.5 )...)
Description: Sets the prior bias value. The value is divided by the number of response levels and then this quantity is added to the counts to ensure nonzero rate estimates. ".5" by default.
JMP Version Added: 14
dt = Open( "$SAMPLE_DATA/Car Poll.jmp" );
obj = dt << Naive Bayes(
Y( :country ),
X( :sex, :marital status, :age, :type, :size ),
Prior Bias( 0.001 )
);
Profiler
Syntax: obj << Profiler( state=0|1 )
Description: Shows or hides the prediction profiler, which is used to graphically explore the prediction equation by slicing it one factor at a time. The prediction profiler contains features for optimization.
JMP Version Added: 14
dt = Open( "$SAMPLE_DATA/Iris.jmp" );
obj = dt << Naive Bayes(
Y( :Species ),
X( :Sepal length, :Sepal width, :Petal length, :Petal width )
);
Wait( 0 );
obj << Profiler( 1 );
Publish Probability Formulas
Syntax: obj << Publish Probability Formulas
Description: Creates probability formulas and saves them as formula column scripts in the Formula Depot platform. If a Formula Depot report is not open, this option creates a Formula Depot report.
JMP Version Added: 14
dt = Open( "$SAMPLE_DATA/Iris.jmp" );
obj = dt << Naive Bayes(
Y( :Species ),
X( :Sepal length, :Sepal width, :Petal length, :Petal width )
);
obj << Publish Probability Formulas;
ROC Curve
Syntax: obj << ROC Curve( state=0|1 ) )
Description: Shows or hides the Receiver Operating Characteristic (ROC) curve for each level of the response variable. The ROC curve is a plot of sensitivity versus (1 - specificity). If you used validation, a plot is shown for each of the training, validation, and test sets. On by default.
JMP Version Added: 14
dt = Open( "$SAMPLE_DATA/Iris.jmp" );
obj = dt << Naive Bayes(
Y( :Species ),
X( :Sepal length, :Sepal width, :Petal length, :Petal width ),
ROC Curve( 0 )
);
Wait( 1 );
obj << ROC Curve( 1 );
Save Predicteds
Syntax: obj << Save Predicteds
Description: Saves a new column to the data table. The column contains the predicted classifications.
JMP Version Added: 14
dt = Open( "$SAMPLE_DATA/Iris.jmp" );
obj = dt << Naive Bayes(
Y( :Species ),
X( :Sepal length, :Sepal width, :Petal length, :Petal width )
);
obj << Save Predicteds;
Save Prediction Formula
Syntax: obj << Save Prediction Formula
Description: Saves a new column to the data table. The column contains the prediction formula for the classifications.
JMP Version Added: 14
dt = Open( "$SAMPLE_DATA/Iris.jmp" );
obj = dt << Naive Bayes(
Y( :Species ),
X( :Sepal length, :Sepal width, :Petal length, :Petal width )
);
obj << Save Prediction Formula;
Save Probability Formula
Syntax: obj << Save Probability Formula
Description: Saves new columns to the data table. The columns contain the formulas that are used to classify each observation.
JMP Version Added: 14
dt = Open( "$SAMPLE_DATA/Iris.jmp" );
obj = dt << Naive Bayes(
Y( :Species ),
X( :Sepal length, :Sepal width, :Petal length, :Petal width )
);
obj << Save Probability Formula;
Use Excluded Rows for Validation
Syntax: obj = Naive Bayes(...Use Excluded Rows for Validation( state=0|1 )...)
Description: Uses the excluded rows in the data table to create a validation set. This option appears in the launch window only if you are using standard JMP and there are excluded rows.
JMP Version Added: 15
dt = Open( "$SAMPLE_DATA/Diabetes.jmp" );
For Each( {i}, 10 :: 200 :: 10, Row State( i ) = Excluded State( 1 ) );
obj = dt << Naive Bayes(
Y( :Y Binary ),
X( :Age, :Gender, :BMI, :BP, :Total Cholesterol, :LDL, :HDL, :TCH, :LTG, :Glucose ),
Use Excluded Rows for Validation( 1 )
);
Validation Portion
Syntax: obj = Naive Bayes(...Validation Portion( fraction=0 )...)
Description: Specifies the portion of the data to be used as the Validation set. "0" by default.
JMP Version Added: 14
dt = Open( "$SAMPLE_DATA/Car Poll.jmp" );
obj = dt << Naive Bayes(
Y( :country ),
X( :sex, :marital status, :age, :type, :size ),
Validation Portion( 0.2 )
);
Shared Item Messages
Action
Syntax: obj << Action
Description: All-purpose trapdoor within a platform to insert expressions to evaluate. Temporarily sets the DisplayBox and DataTable contexts to the Platform.
dt = Open( "$SAMPLE_DATA/Big Class.jmp" );
dt << Bivariate(
Y( :height ),
X( :weight ),
Action( Distribution( Y( :height, :weight ), Histograms Only ) )
);
Apply Preset
Syntax: Apply Preset( preset ); Apply Preset( source, label, <Folder( folder {, folder2, ...} )> )
Description: Apply a previously created preset to the object, updating the options and customizations to match the saved settings.
JMP Version Added: 18
Anonymous preset
dt = Open( "$SAMPLE_DATA/Big Class.jmp" );
obj = dt << Oneway( Y( :height ), X( :sex ), t Test( 1 ) );
preset = obj << New Preset();
dt2 = Open( "$SAMPLE_DATA/Dogs.jmp" );
obj2 = dt2 << Oneway( Y( :LogHist0 ), X( :drug ) );
Wait( 1 );
obj2 << Apply Preset( preset );
Search by name
dt = Open( "$SAMPLE_DATA/Big Class.jmp" );
obj = dt << Oneway( Y( :height ), X( :sex ) );
Wait( 1 );
obj << Apply Preset( "Sample Presets", "Compare Distributions" );
Search within folder(s)
dt = Open( "$SAMPLE_DATA/Big Class.jmp" );
obj = dt << Oneway( Y( :height ), X( :sex ) );
Wait( 1 );
obj << Apply Preset( "Sample Presets", "t-Tests", Folder( "Compare Means" ) );
Automatic Recalc
Syntax: obj << Automatic Recalc( state=0|1 )
Description: Redoes the analysis automatically for exclude and data changes. If the Automatic Recalc option is turned on, you should consider using Wait(0) commands to ensure that the exclude and data changes take effect before the recalculation.
dt = Open( "$SAMPLE_DATA/Iris.jmp" );
obj = dt << Naive Bayes(
Y( :Species ),
X( :Sepal length, :Sepal width, :Petal length, :Petal width )
);
obj << Automatic Recalc( 1 );
dt << Select Rows( 5 ) << Exclude( 1 );
Broadcast
Syntax: obj << Broadcast(message)
Description: Broadcasts a message to a platform. If return results from individual objects are tables, they are concatenated if possible, and the final format is identical to either the result from the Save Combined Table option in a Table Box or the result from the Concatenate option using a Source column. Other than those, results are stored in a list and returned.
JMP Version Added: 18
dt = Open( "$SAMPLE_DATA/Quality Control/Diameter.jmp" );
objs = Control Chart Builder(
Variables( Subgroup( :DAY ), Y( :DIAMETER ) ),
By( :OPERATOR )
);
objs[1] << Broadcast( Save Summaries );
Column Switcher
Syntax: obj << Column Switcher(column reference, {column reference, ...}, < Title(title) >, < Close Outline(0|1) >, < Retain Axis Settings(0|1) >, < Layout(0|1) >)
Description: Adds a control panel for changing the platform's variables
dt = Open( "$SAMPLE_DATA/Car Poll.jmp" );
obj = dt << Contingency( Y( :size ), X( :marital status ) );
ColumnSwitcherObject = obj << Column Switcher(
:marital status,
{:sex, :country, :marital status}
);
Copy ByGroup Script
Syntax: obj << Copy ByGroup Script
Description: Create a JSL script to produce this analysis, and put it on the clipboard.
dt = Open( "$SAMPLE_DATA/Iris.jmp" );
dt << New Column( "_bycol",
Character,
Nominal,
set values( Repeat( {"A", "B"}, N Rows( dt ) )[1 :: N Rows( dt )] )
);
obj = dt << Naive Bayes(
Y( :Species ),
X( :Sepal length, :Sepal width, :Petal length, :Petal width ),
By( _bycol )
);
obj[1] << Copy ByGroup Script;
Copy Script
Syntax: obj << Copy Script
Description: Create a JSL script to produce this analysis, and put it on the clipboard.
dt = Open( "$SAMPLE_DATA/Iris.jmp" );
obj = dt << Naive Bayes(
Y( :Species ),
X( :Sepal length, :Sepal width, :Petal length, :Petal width )
);
obj << Copy Script;
Data Table Window
Syntax: obj << Data Table Window
Description: Move the data table window for this analysis to the front.
dt = Open( "$SAMPLE_DATA/Iris.jmp" );
obj = dt << Naive Bayes(
Y( :Species ),
X( :Sepal length, :Sepal width, :Petal length, :Petal width )
);
obj << Data Table Window;
Get By Levels
Syntax: obj << Get By Levels
Description: Returns an associative array mapping the by group columns to their values.
JMP Version Added: 18
dt = Open( "$SAMPLE_DATA/Big Class.jmp" );
biv = dt << Bivariate( X( :height ), Y( :weight ), By( :sex ) );
biv << Get By Levels;
Get ByGroup Script
Syntax: obj << Get ByGroup Script
Description: Creates a script (JSL) to produce this analysis and returns it as an expression.
dt = Open( "$SAMPLE_DATA/Iris.jmp" );
dt << New Column( "_bycol",
Character,
Nominal,
set values( Repeat( {"A", "B"}, N Rows( dt ) )[1 :: N Rows( dt )] )
);
obj = dt << Naive Bayes(
Y( :Species ),
X( :Sepal length, :Sepal width, :Petal length, :Petal width ),
By( _bycol )
);
t = obj[1] << Get ByGroup Script;
Show( t );
Get Container
Syntax: obj << Get Container
Description: Returns a reference to the container box that holds the content for the object.
General
dt = Open( "$SAMPLE_DATA/Iris.jmp" );
obj = dt << Naive Bayes(
Y( :Species ),
X( :Sepal length, :Sepal width, :Petal length, :Petal width )
);
t = obj << Get Container;
Show( (t << XPath( "//OutlineBox" )) << Get Title );
Platform with Filter
dt = Open( "$SAMPLE_DATA/Big Class.jmp" );
gb = Graph Builder(
Show Control Panel( 0 ),
Variables( X( :height ), Y( :weight ) ),
Elements( Points( X, Y, Legend( 1 ) ), Smoother( X, Y, Legend( 2 ) ) ),
Local Data Filter(
Add Filter(
columns( :age, :sex, :height ),
Where( :age == {12, 13, 14} ),
Where( :sex == "F" ),
Where( :height >= 55 ),
Display( :age, N Items( 6 ) )
)
)
);
New Window( "platform boxes",
H List Box(
Outline Box( "Report(platform)", Report( gb ) << Get Picture ),
Outline Box( "platform << Get Container", (gb << Get Container) << Get Picture )
)
);
Get Data Table
Syntax: obj << Get Data Table
Description: Returns a reference to the data table.
dt = Open( "$SAMPLE_DATA/Iris.jmp" );
obj = dt << Naive Bayes(
Y( :Species ),
X( :Sepal length, :Sepal width, :Petal length, :Petal width )
);
t = obj << Get Datatable;
Show( N Rows( t ) );
Get Group Platform
Syntax: obj << Get Group Platform
Description: Return the Group Platform object if this platform is part of a Group. Otherwise, returns Empty().
dt = Open( "$SAMPLE_DATA/Big Class.jmp" );
biv = dt << Bivariate( Y( :weight ), X( :height ), By( :sex ) );
group = biv[1] << Get Group Platform;
Wait( 1 );
group << Layout( "Arrange in Tabs" );
Get Script
Syntax: obj << Get Script
Description: Creates a script (JSL) to produce this analysis and returns it as an expression.
dt = Open( "$SAMPLE_DATA/Iris.jmp" );
obj = dt << Naive Bayes(
Y( :Species ),
X( :Sepal length, :Sepal width, :Petal length, :Petal width )
);
t = obj << Get Script;
Show( t );
Get Script With Data Table
Syntax: obj << Get Script With Data Table
Description: Creates a script(JSL) to produce this analysis specifically referencing this data table and returns it as an expression.
dt = Open( "$SAMPLE_DATA/Iris.jmp" );
obj = dt << Naive Bayes(
Y( :Species ),
X( :Sepal length, :Sepal width, :Petal length, :Petal width )
);
t = obj << Get Script With Data Table;
Show( t );
Get Timing
Syntax: obj << Get Timing
Description: Times the platform launch.
dt = Open( "$SAMPLE_DATA/Iris.jmp" );
obj = dt << Naive Bayes(
Y( :Species ),
X( :Sepal length, :Sepal width, :Petal length, :Petal width )
);
t = obj << Get Timing;
Show( t );
Get Web Support
Syntax: obj << Get Web Support
Description: Return a number indicating the level of Interactive HTML support for the display object. 1 means some or all elements are supported. 0 means no support.
dt = Open( "$SAMPLE_DATA/Big Class.jmp" );
obj = dt << Bivariate( Y( :Weight ), X( :Height ) );
s = obj << Get Web Support();
Show( s );
Get Where Expr
Syntax: obj << Get Where Expr
Description: Returns the Where expression for the data subset, if the platform was launched with By() or Where(). Otherwise, returns Empty()
JMP Version Added: 18
dt = Open( "$SAMPLE_DATA/Big Class.jmp" );
biv = dt << Bivariate( X( :height ), Y( :weight ), By( :sex ) );
biv2 = dt << Bivariate( X( :height ), Y( :weight ), Where( :age < 14 & :height > 60 ) );
Show( biv[1] << Get Where Expr, biv2 << Get Where Expr );
Ignore Platform Preferences
Syntax: Ignore Platform Preferences( state=0|1 )
Description: Ignores the current settings of the platform's preferences. The message is ignored when sent to the platform after creation.
dt = Open( "$SAMPLE_DATA/Big Class.jmp" );
dt << Bivariate(
Ignore Platform Preferences( 1 ),
Y( :height ),
X( :weight ),
Action( Distribution( Y( :height, :weight ), Histograms Only ) )
);
Local Data Filter
Syntax: obj << Local Data Filter
Description: To filter data to specific groups or ranges, but local to this platform
dt = Open( "$SAMPLE_DATA/Car Poll.jmp" );
dt << Distribution(
Nominal Distribution( Column( :country ) ),
Local Data Filter(
Add Filter( columns( :sex ), Where( :sex == "Female" ) ),
Mode( Show( 1 ), Include( 1 ) )
)
);
New JSL Preset
Syntax: New JSL Preset( preset )
Description: For testing purposes, create a preset directly from a JSL expression. Like <<New Preset, it will return a Platform Preset that can be applied using <<Apply Preset. But it allows you to specify the full JSL expression for the preset to test outside of normal operation. You will get an Assert on apply if the platform names do not match, but that is expected.
JMP Version Added: 18
dt = Open( "$SAMPLE_DATA/Big Class.jmp" );
obj = dt << Oneway( Y( :Height ), X( :Age ) );
preset = obj << New JSL Preset( Oneway( Y( :A ), X( :B ), Each Pair( 1 ) ) );
Wait( 1 );
obj << Apply Preset( preset );
New Preset
Syntax: obj = New Preset()
Description: Create an anonymous preset representing the options and customizations applied to the object. This object can be passed to Apply Preset to copy the settings to another object of the same type.
JMP Version Added: 18
dt = Open( "$SAMPLE_DATA/Big Class.jmp" );
obj = dt << Oneway( Y( :height ), X( :sex ), t Test( 1 ) );
preset = obj << New Preset();
Paste Local Data Filter
Syntax: obj << Paste Local Data Filter
Description: Apply the local data filter from the clipboard to the current report.
dt = Open( "$SAMPLE_DATA/Cities.jmp" );
dist = Distribution( Continuous Distribution( Column( :POP ) ) );
filter = dist << Local Data Filter(
Add Filter( columns( :Region ), Where( :Region == "MW" ) )
);
filter << Copy Local Data Filter;
dist2 = Distribution( Continuous Distribution( Column( :Lead ) ) );
Wait( 1 );
dist2 << Paste Local Data Filter;
Redo Analysis
Syntax: obj << Redo Analysis
Description: Rerun this same analysis in a new window. The analysis will be different if the data has changed.
dt = Open( "$SAMPLE_DATA/Iris.jmp" );
obj = dt << Naive Bayes(
Y( :Species ),
X( :Sepal length, :Sepal width, :Petal length, :Petal width )
);
obj << Redo Analysis;
Redo ByGroup Analysis
Syntax: obj << Redo ByGroup Analysis
Description: Rerun this same analysis in a new window. The analysis will be different if the data has changed.
dt = Open( "$SAMPLE_DATA/Iris.jmp" );
dt << New Column( "_bycol",
Character,
Nominal,
set values( Repeat( {"A", "B"}, N Rows( dt ) )[1 :: N Rows( dt )] )
);
obj = dt << Naive Bayes(
Y( :Species ),
X( :Sepal length, :Sepal width, :Petal length, :Petal width ),
By( _bycol )
);
obj[1] << Redo ByGroup Analysis;
Relaunch Analysis
Syntax: obj << Relaunch Analysis
Description: Opens the platform launch window and recalls the settings that were used to create the report.
dt = Open( "$SAMPLE_DATA/Iris.jmp" );
obj = dt << Naive Bayes(
Y( :Species ),
X( :Sepal length, :Sepal width, :Petal length, :Petal width )
);
obj << Relaunch Analysis;
Relaunch ByGroup
Syntax: obj << Relaunch ByGroup
Description: Opens the platform launch window and recalls the settings that were used to create the report.
dt = Open( "$SAMPLE_DATA/Iris.jmp" );
dt << New Column( "_bycol",
Character,
Nominal,
set values( Repeat( {"A", "B"}, N Rows( dt ) )[1 :: N Rows( dt )] )
);
obj = dt << Naive Bayes(
Y( :Species ),
X( :Sepal length, :Sepal width, :Petal length, :Petal width ),
By( _bycol )
);
obj[1] << Relaunch ByGroup;
Remove Column Switcher
Syntax: obj << Remove Column Switcher
Description: Removes the most recent Column Switcher that has been added to the platform.
dt = Open( "$SAMPLE_DATA/Car Poll.jmp" );
obj = dt << Contingency( Y( :size ), X( :marital status ) );
ColumnSwitcherObject = obj << Column Switcher(
:marital status,
{:sex, :country, :marital status}
);
Wait( 2 );
obj << Remove Column Switcher;
Remove Local Data Filter
Syntax: obj << Remove Local Data Filter
Description: If a local data filter has been created, this removes it and restores the platform to use all the data in the data table directly
dt = Open( "$SAMPLE_DATA/Car Poll.jmp" );
dist = dt << Distribution(
Nominal Distribution( Column( :country ) ),
Local Data Filter(
Add Filter( columns( :sex ), Where( :sex == "Female" ) ),
Mode( Show( 1 ), Include( 1 ) )
)
);
Wait( 2 );
dist << remove local data filter;
Render Preset
Syntax: Render Preset( preset )
Description: For testing purposes, show the platform rerun script that would be used when applying a platform preset to the platform in the log. No changes are made to the platform.
JMP Version Added: 18
dt = Open( "$SAMPLE_DATA/Big Class.jmp" );
obj = dt << Oneway( Y( :Height ), X( :Age ) );
obj << Render Preset( Expr( Oneway( Y( :A ), X( :B ), Each Pair( 1 ) ) ) );
Report
Syntax: obj << Report;Report( obj )
Description: Returns a reference to the report object.
dt = Open( "$SAMPLE_DATA/Iris.jmp" );
obj = dt << Naive Bayes(
Y( :Species ),
X( :Sepal length, :Sepal width, :Petal length, :Petal width )
);
r = obj << Report;
t = r[Outline Box( 1 )] << Get Title;
Show( t );
Report View
Syntax: obj << Report View( "Full"|"Summary" )
Description: The report view determines the level of detail visible in a platform report. Full shows all of the detail, while Summary shows only select content, dependent on the platform. For customized behavior, display boxes support a <<Set Summary Behavior message.
dt = Open( "$SAMPLE_DATA/Iris.jmp" );
obj = dt << Naive Bayes(
Y( :Species ),
X( :Sepal length, :Sepal width, :Petal length, :Petal width )
);
obj << Report View( "Summary" );
Save ByGroup Script to Data Table
Syntax: Save ByGroup Script to Data Table( <name>, < <<Append Suffix(0|1)>, < <<Prompt(0|1)>, < <<Replace(0|1)> );
Description: Creates a JSL script to produce this analysis, and save it as a table property in the data table. You can specify a name for the script. The Append Suffix option appends a numeric suffix to the script name, which differentiates the script from an existing script with the same name. The Prompt option prompts the user to specify a script name. The Replace option replaces an existing script with the same name.
dt = Open( "$SAMPLE_DATA/Iris.jmp" );
dt << New Column( "_bycol",
Character,
Nominal,
set values( Repeat( {"A", "B"}, N Rows( dt ) )[1 :: N Rows( dt )] )
);
obj = dt << Naive Bayes(
Y( :Species ),
X( :Sepal length, :Sepal width, :Petal length, :Petal width ),
By( _bycol )
);
obj[1] << Save ByGroup Script to Data Table;
Save ByGroup Script to Journal
Syntax: obj << Save ByGroup Script to Journal
Description: Create a JSL script to produce this analysis, and add a Button to the journal containing this script.
dt = Open( "$SAMPLE_DATA/Iris.jmp" );
dt << New Column( "_bycol",
Character,
Nominal,
set values( Repeat( {"A", "B"}, N Rows( dt ) )[1 :: N Rows( dt )] )
);
obj = dt << Naive Bayes(
Y( :Species ),
X( :Sepal length, :Sepal width, :Petal length, :Petal width ),
By( _bycol )
);
obj[1] << Save ByGroup Script to Journal;
Save ByGroup Script to Script Window
Syntax: obj << Save ByGroup Script to Script Window
Description: Create a JSL script to produce this analysis, and append it to the current Script text window.
dt = Open( "$SAMPLE_DATA/Iris.jmp" );
dt << New Column( "_bycol",
Character,
Nominal,
set values( Repeat( {"A", "B"}, N Rows( dt ) )[1 :: N Rows( dt )] )
);
obj = dt << Naive Bayes(
Y( :Species ),
X( :Sepal length, :Sepal width, :Petal length, :Petal width ),
By( _bycol )
);
obj[1] << Save ByGroup Script to Script Window;
Save Script for All Objects
Syntax: obj << Save Script for All Objects
Description: Creates a script for all report objects in the window and appends it to the current Script window. This option is useful when you have multiple reports in the window.
dt = Open( "$SAMPLE_DATA/Iris.jmp" );
obj = dt << Naive Bayes(
Y( :Species ),
X( :Sepal length, :Sepal width, :Petal length, :Petal width )
);
obj << Save Script for All Objects;
Save Script for All Objects To Data Table
Syntax: obj << Save Script for All Objects To Data Table( <name> )
Description: Saves a script for all report objects to the current data table. This option is useful when you have multiple reports in the window. The script is named after the first platform unless you specify the script name in quotes.
Example 1
dt = Open( "$SAMPLE_DATA/Iris.jmp" );
dt << New Column( "_bycol",
Character,
Nominal,
set values( Repeat( {"A", "B"}, N Rows( dt ) )[1 :: N Rows( dt )] )
);
obj = dt << Naive Bayes(
Y( :Species ),
X( :Sepal length, :Sepal width, :Petal length, :Petal width ),
By( _bycol )
);
obj[1] << Save Script for All Objects To Data Table;
Example 2
dt = Open( "$SAMPLE_DATA/Iris.jmp" );
dt << New Column( "_bycol",
Character,
Nominal,
set values( Repeat( {"A", "B"}, N Rows( dt ) )[1 :: N Rows( dt )] )
);
obj = dt << Naive Bayes(
Y( :Species ),
X( :Sepal length, :Sepal width, :Petal length, :Petal width ),
By( _bycol )
);
obj[1] << Save Script for All Objects To Data Table( "My Script" );
Save Script to Data Table
Syntax: Save Script to Data Table( <name>, < <<Prompt(0|1)>, < <<Replace(0|1)> );
Description: Create a JSL script to produce this analysis, and save it as a table property in the data table.
dt = Open( "$SAMPLE_DATA/Iris.jmp" );
obj = dt << Naive Bayes(
Y( :Species ),
X( :Sepal length, :Sepal width, :Petal length, :Petal width )
);
obj << Save Script to Data Table( "My Analysis", <<Prompt( 0 ), <<Replace( 0 ) );
Save Script to Journal
Syntax: obj << Save Script to Journal
Description: Create a JSL script to produce this analysis, and add a Button to the journal containing this script.
dt = Open( "$SAMPLE_DATA/Iris.jmp" );
obj = dt << Naive Bayes(
Y( :Species ),
X( :Sepal length, :Sepal width, :Petal length, :Petal width )
);
obj << Save Script to Journal;
Save Script to Report
Syntax: obj << Save Script to Report
Description: Create a JSL script to produce this analysis, and show it in the report itself. Useful to preserve a printed record of what was done.
dt = Open( "$SAMPLE_DATA/Iris.jmp" );
obj = dt << Naive Bayes(
Y( :Species ),
X( :Sepal length, :Sepal width, :Petal length, :Petal width )
);
obj << Save Script to Report;
Save Script to Script Window
Syntax: obj << Save Script to Script Window
Description: Create a JSL script to produce this analysis, and append it to the current Script text window.
dt = Open( "$SAMPLE_DATA/Iris.jmp" );
obj = dt << Naive Bayes(
Y( :Species ),
X( :Sepal length, :Sepal width, :Petal length, :Petal width )
);
obj << Save Script to Script Window;
SendToByGroup
Syntax: SendToByGroup( {":Column == level"}, command );
Description: Sends platform commands or display customization commands to each level of a by-group.
dt = Open( "$SAMPLE_DATA/Big Class.jmp" );
dt << Distribution(
By( :Sex ),
SendToByGroup(
{:sex == "F"},
Continuous Distribution( Column( :weight ), Normal Quantile Plot( 1 ) )
),
SendToByGroup( {:sex == "M"}, Continuous Distribution( Column( :weight ) ) )
);
SendToEmbeddedScriptable
Syntax: SendToEmbeddedScriptable( Dispatch( "Outline name", "Element name", command );
Description: SendToEmbeddedScriptable restores settings of embedded scriptable objects.
dt = Open( "$SAMPLE_DATA/Reliability/Fan.jmp" );
dt << Life Distribution(
Y( :Time ),
Censor( :Censor ),
Censor Code( 1 ),
<<Fit Weibull,
SendToEmbeddedScriptable(
Dispatch(
{"Statistics", "Parametric Estimate - Weibull", "Profilers", "Density Profiler"},
{1, Confidence Intervals( 0 ), Term Value( Time( 6000, Lock( 0 ), Show( 1 ) ) )}
)
)
);
SendToReport
Syntax: SendToReport( Dispatch( "Outline name", "Element name", Element type, command );
Description: Send To Report is used in tandem with the Dispatch command to customize the appearance of a report.
dt = Open( "$SAMPLE_DATA/Big Class.jmp" );
dt << Distribution(
Nominal Distribution( Column( :age ) ),
Continuous Distribution( Column( :weight ) ),
SendToReport( Dispatch( "age", "Distrib Nom Hist", FrameBox, {Frame Size( 178, 318 )} ) )
);
Sync to Data Table Changes
Syntax: obj << Sync to Data Table Changes
Description: Sync with the exclude and data changes that have been made.
dt = Open( "$SAMPLE_DATA/Cities.jmp" );
dist = Distribution( Continuous Distribution( Column( :POP ) ) );
Wait( 1 );
dt << Delete Rows( dt << Get Rows Where( :Region == "W" ) );
dist << Sync To Data Table Changes;
Title
Syntax: obj << Title( "new title" )
Description: Sets the title of the platform.
dt = Open( "$SAMPLE_DATA/Iris.jmp" );
obj = dt << Naive Bayes(
Y( :Species ),
X( :Sepal length, :Sepal width, :Petal length, :Petal width )
);
obj << Title( "My Platform" );
Top Report
Syntax: obj << Top Report
Description: Returns a reference to the root node in the report.
dt = Open( "$SAMPLE_DATA/Iris.jmp" );
obj = dt << Naive Bayes(
Y( :Species ),
X( :Sepal length, :Sepal width, :Petal length, :Petal width )
);
r = obj << Top Report;
t = r[Outline Box( 1 )] << Get Title;
Show( t );
Transform Column
Syntax: obj = <Platform>(... Transform Column(<name>, Formula(<expression>), [Random Seed(<n>)], [Numeric|Character|Expression], [Continuous|Nominal|Ordinal|Unstructured Text], [column properties]) ...)
Description: Create a transform column in the local context of an object, usually a platform. The transform column is active only for the lifetime of the platform.
JMP Version Added: 16
dt = Open( "$SAMPLE_DATA/Big Class.jmp" );
dt << Distribution(
Transform Column( "age^2", Format( "Fixed Dec", 5, 0 ), Formula( :age * :age ) ),
Continuous Distribution( Column( :"age^2"n ) )
);
View Web XML
Syntax: obj << View Web XML
Description: Returns the XML code that is used to create the interactive HTML report.
dt = Open( "$SAMPLE_DATA/Big Class.jmp" );
obj = dt << Bivariate( Y( :Weight ), X( :Height ) );
xml = obj << View Web XML;
Window View
Syntax: obj = Naive Bayes(...Window View( "Visible"|"Invisible"|"Private" )...)
Description: Set the type of the window to be created for the report. By default a Visible report window will be created. An Invisible window will not appear on screen, but is discoverable by functions such as Window(). A Private window responds to most window messages but is not discoverable and must be addressed through the report object
dt = Open( "$SAMPLE_DATA/Big Class.jmp" );
biv = dt << Bivariate( Window View( "Private" ), Y( :weight ), X( :height ), Fit Line );
eqn = Report( biv )["Linear Fit", Text Edit Box( 1 )] << Get Text;
biv << Close Window;
New Window( "Bivariate Equation",
Outline Box( "Big Class Linear Fit", Text Box( eqn, <<Set Base Font( "Title" ) ) )
);