Time Series
More examples for this topic using the sample data files provided with JMP
Fit a standard least squares regression model with multiple polynomial and interaction effects.
// Open data table
dt = Open("$Sample_Data/Design Experiment/Custom RSM.jmp");
// Model
Fit Model(
Y( :Y ),
Effects(
:X1 & RS, :X2 & RS, :X3 & RS,
:X1 * :X1, :X1 * :X2, :X2 * :X2,
:X1 * :X3, :X2 * :X3, :X3 * :X3
),
Personality(
"Standard Least Squares"
)
);
Analyze and visualize the process history using the Process History Explorer tool, incorporating data from multiple tables by opening and linking relevant datasets.
// Open data table
dt = Open("$Sample_Data/Quality Control/Lot Wafer History.jmp");
// Process History Explorer
Open(
"$SAMPLE_DATA/Quality Control/Lot Wafer Yield.jmp"
);
Open(
"$SAMPLE_DATA/Quality Control/Lot Wafer History.jmp"
) <<
Process History Explorer(
ID( :Lot, :Wafer ),
X( :Tool, :Route ),
Step( :Layer, :Operation ),
Timestamp( :TimeIn, :TimeOut ),
Yield Table( "Lot Wafer Yield" ),
Yield Columns( "Yield" ),
Levels with Lowest Yield( 1 )
);
Forecast time series data by applying the Time Series Forecast function to the specified Y variable, grouped by the Series variable over the Time variable.
// Open data table
dt = Open("$Sample_Data/Time Series/M3C Quarterly.jmp");
// Time Series Forecast of Data
Time Series Forecast(
Y( :Y ),
Grouping( :Series ),
Time( :Time )
);
Generate a Time Series Forecast for grouped quarterly data using the Time Series Forecast function with a 4-period ahead prediction and constrained parameters.
// Open data table
dt = Open("$Sample_Data/Time Series/M3C Quarterly.jmp");
// Time Series Forecast of Data 2
Time Series Forecast(
Y( :Y ),
Grouping( :Series ),
Time( :Time ),
Fit Model(
NAhead( 4 ),
Period( 4 ),
Constrain Parameters( 1 )
)
);
Perform Time Series X11 decomposition of a dataset containing monthly sales data using the Date column as the time variable.
// Open data table
dt = Open("$Sample_Data/Time Series/Monthly Sales.jmp");
// Time Series X11
Time Series(
X( :Date ),
Y( :Sales ),
X11( Additive )
);
Detrend a time series dataset by removing both linear trend and seasonal cycle with a 12-month cycle.
// Open data table
dt = Open("$Sample_Data/Time Series/Monthly Sales.jmp");
// Time Series Detrended
Time Series(
X( :Date ),
Y( :Sales ),
Remove Linear Trend(
Remove Cycle(
Units per Cycle( 12 ),
Has Constant( 0 )
)
)
);
Analyze time series data using variogram and seasonal ARIMA models with specified parameters.
// Open data table
dt = Open("$Sample_Data/Time Series/Seriesg.jmp");
// Time Series
Time Series(
Y( :Log Passengers ),
Variogram( 1 ),
Seasonal ARIMA(
0,
1,
1,
0,
1,
1,
12,
No Intercept( 1 )
)
);
Compute the Spectral Density for a Time Series Analysis
// Open data table
dt = Open("$Sample_Data/Wolfer Sunspot.jmp");
// Spectral Density
Time Series(
Y( :wolfer ),
Spectral Density( 1 )
);
Create a P chart to monitor the proportion of Total Plastic defects over time using the Control Chart Builder platform , with subgrouping by Week, phase variable by Location, and n Trials based on Total Volume.
// Open data table
dt = Open("$Sample_Data/Quality Control/Water Plastics.jmp");
// P chart of Total Plastic
Control Chart Builder(
Size( 814, 307 ),
Show Two Shewhart Charts( 0 ),
Show Control Panel( 0 ),
Show Limit Summaries( 0 ),
Class( Shewhart Attribute ),
Variables(
Subgroup( :Week ),
Y( :Total Plastic ),
Phase( :Location ),
n Trials( :Total Volume )
),
Chart(
Points(
Statistic( "Proportion" )
),
Limits(
Sigma( "Binomial" ),
Show Lower Limit( 0 )
)
),
SendToReport(
Dispatch( {},
"Control Chart Builder",
FrameBox,
{
DispatchSeg(
Text Seg( 1 ),
{Line Color( "None" ),
Fill Color( "None" )}
),
DispatchSeg(
Text Seg( 2 ),
{Line Color( "None" ),
Fill Color( "None" )}
),
DispatchSeg(
Text Seg( 3 ),
{Line Color( "None" ),
Fill Color( "None" )}
)}
)
)
);