Bootstrap Forest

Associated Constructors

Bootstrap Forest

Syntax: Bootstrap Forest (Y( column ), X( columns ))

Description: Constructs a predictive model by averaging predicted values from many decision trees. Each decision tree is fit to a random bootstrap sample of the training data.


dt = Open( "$SAMPLE_DATA/Diabetes.jmp" );
obj = dt << Bootstrap Forest(
    Y( :Y ),
    X( :Age, :Gender, :BMI, :BP, :Total Cholesterol, :LDL, :HDL, :TCH, :LTG, :Glucose ),
    Validation( :Validation ),
    Minimum Splits Per Tree( 5 ),
    Portion Bootstrap( 1 ),
    Number Terms( 3 ),
    Number Trees( 25 ),
    Go
);

Columns

By

Syntax: obj << By( column(s) )


dt = Open( "$SAMPLE_DATA/Diabetes.jmp" );
dt << New Column( "_bycol",
    Character,
    Nominal,
    set values( Repeat( {"A", "B"}, N Rows( dt ) )[1 :: N Rows( dt )] )
);
obj = dt << Bootstrap Forest(
    Y( :Y ),
    X( :Age, :Gender, :BMI, :BP, :Total Cholesterol, :LDL, :HDL, :TCH, :LTG, :Glucose ),
    Validation( :Validation ),
    Minimum Splits Per Tree( 5 ),
    Portion Bootstrap( 1 ),
    Number Terms( 3 ),
    Number Trees( 25 ),
    By( _bycol ),
    Go
);

Factor

Syntax: obj << Factor( column(s) )


dt = Open( "$SAMPLE_DATA/Diabetes.jmp" );
obj = dt << Bootstrap Forest(
    Y( :Y ),
    X( :Age, :Gender, :BMI, :BP, :Total Cholesterol, :LDL, :HDL, :TCH, :LTG, :Glucose ),
    Validation( :Validation ),
    Minimum Splits Per Tree( 5 ),
    Portion Bootstrap( 1 ),
    Number Terms( 3 ),
    Number Trees( 25 ),
    Go
);

Freq

Syntax: obj << Freq( column )


dt = Open( "$SAMPLE_DATA/Diabetes.jmp" );
dt << New Column( "_freqcol", Numeric, Continuous, Formula( Random Integer( 1, 5 ) ) );
obj = dt << Bootstrap Forest(
    Y( :Y ),
    X( :Age, :Gender, :BMI, :BP, :Total Cholesterol, :LDL, :HDL, :TCH, :LTG, :Glucose ),
    Validation( :Validation ),
    Minimum Splits Per Tree( 5 ),
    Portion Bootstrap( 1 ),
    Number Terms( 3 ),
    Number Trees( 25 ),
    Freq( _freqcol ),
    Go
);

Response

Syntax: obj << Response( column(s) )


dt = Open( "$SAMPLE_DATA/Diabetes.jmp" );
obj = dt << Bootstrap Forest(
    Y( :Y ),
    X( :Age, :Gender, :BMI, :BP, :Total Cholesterol, :LDL, :HDL, :TCH, :LTG, :Glucose ),
    Validation( :Validation ),
    Minimum Splits Per Tree( 5 ),
    Portion Bootstrap( 1 ),
    Number Terms( 3 ),
    Number Trees( 25 ),
    Go
);

Validation

Syntax: obj << Validation( column )


dt = Open( "$SAMPLE_DATA/Diabetes.jmp" );
obj = dt << Bootstrap Forest(
    Y( :Y ),
    X( :Age, :Gender, :BMI, :BP, :Total Cholesterol, :LDL, :HDL, :TCH, :LTG, :Glucose ),
    Validation( :Validation ),
    Minimum Splits Per Tree( 5 ),
    Portion Bootstrap( 1 ),
    Number Terms( 3 ),
    Number Trees( 25 ),
    Go
);

Weight

Syntax: obj << Weight( column )


dt = Open( "$SAMPLE_DATA/Diabetes.jmp" );
dt << New Column( "_weightcol", Numeric, Continuous, Formula( Random Beta( 1, 1 ) ) );
obj = dt << Bootstrap Forest(
    Y( :Y ),
    X( :Age, :Gender, :BMI, :BP, :Total Cholesterol, :LDL, :HDL, :TCH, :LTG, :Glucose ),
    Validation( :Validation ),
    Minimum Splits Per Tree( 5 ),
    Portion Bootstrap( 1 ),
    Number Terms( 3 ),
    Number Trees( 25 ),
    Weight( _weightcol ),
    Go
);

X

Syntax: obj << X( column(s) )


dt = Open( "$SAMPLE_DATA/Diabetes.jmp" );
obj = dt << Bootstrap Forest(
    Y( :Y ),
    X( :Age, :Gender, :BMI, :BP, :Total Cholesterol, :LDL, :HDL, :TCH, :LTG, :Glucose ),
    Validation( :Validation ),
    Minimum Splits Per Tree( 5 ),
    Portion Bootstrap( 1 ),
    Number Terms( 3 ),
    Number Trees( 25 ),
    Go
);

Y

Syntax: obj << Y( column(s) )


dt = Open( "$SAMPLE_DATA/Diabetes.jmp" );
obj = dt << Bootstrap Forest(
    Y( :Y ),
    X( :Age, :Gender, :BMI, :BP, :Total Cholesterol, :LDL, :HDL, :TCH, :LTG, :Glucose ),
    Validation( :Validation ),
    Minimum Splits Per Tree( 5 ),
    Portion Bootstrap( 1 ),
    Number Terms( 3 ),
    Number Trees( 25 ),
    Go
);

Item Messages

Column Contributions

Syntax: obj << Column Contributions( state=0|1 )

Description: Shows or hides a report with each input column and its corresponding contribution to the fit.


dt = Open( "$SAMPLE_DATA/Diabetes.jmp" );
obj = dt << Bootstrap Forest(
    Y( :Y ),
    X( :Age, :Gender, :BMI, :BP, :Total Cholesterol, :LDL, :HDL, :TCH, :LTG, :Glucose ),
    Validation( :Validation ),
    Minimum Splits Per Tree( 5 ),
    Portion Bootstrap( 1 ),
    Number Terms( 3 ),
    Number Trees( 25 ),
    Go
);
obj << Column Contributions( 1 );

Decision Threshold

Syntax: obj << Decision Threshold( state = 0|1, Set Probability Threshold( number ) )

Description: Shows or hides the distribution of fitted probabilities and actual versus predicted tables for each model. You can change the probability threshold to explore how different thresholds affect the classification results.


dt = Open( "$Sample_Data/Diabetes.jmp" );
obj = dt << Bootstrap Forest(
    Y( :Y Binary ),
    X( :Age, :Gender, :BMI, :BP, :Total Cholesterol, :LDL, :HDL, :TCH, :LTG, :Glucose ),
    Number Terms( 8 ),
    Number Trees( 100 ),
    Go
);
obj << Decision Threshold( 1 );

Early Stopping

Syntax: obj << Early Stopping( state=0|1 )

Description: Stops iterating early when additional layers do not improve the validation statistic. On by default.


dt = Open( "$SAMPLE_DATA/Diabetes.jmp" );
dt << New Column( "Holdback1", formula( Random Integer( 1, 3 ) ) );
obj = dt << Bootstrap Forest(
    Y( :Y Binary ),
    X( :Age, :BMI, :BP, :Total Cholesterol, :LDL, :HDL, :TCH, :LTG, :Glucose ),
    validation( :Holdback1 ),
    Early Stopping( 1 ),
    Go
);

Get Average Absolute Error Test

Syntax: obj << Get Average Absolute Error Test

Description: Returns the Mean Abs Dev statistic for the test set. Available only when using a validation set.

Boosted Tree Example


dt = Open( "$SAMPLE_DATA/Diabetes.jmp" );
dt << Make Validation Column( Training Set( .6 ), Validation Set( .2 ), Test Set( .2 ), Go );
obj = dt << Boosted Tree(
    Y( :Y Binary ),
    X( :Age, :BMI, :BP, :Total Cholesterol, :LDL, :HDL, :TCH, :LTG, :Glucose ),
    Validation( :Validation 2 ),
    Go
);
aabs = obj << Get Average Absolute Error Test;
Show( aabs );

Bootstrap Forest Example


dt = Open( "$SAMPLE_DATA/Diabetes.jmp" );
dt << Make Validation Column( Training Set( .6 ), Validation Set( .2 ), Test Set( .2 ), Go );
obj = dt << Bootstrap Forest(
    Y( :Y Binary ),
    X( :Age, :BMI, :BP, :Total Cholesterol, :LDL, :HDL, :TCH, :LTG, :Glucose ),
    Validation( :Validation 2 ),
    Go
);
aabs = obj << Get Average Absolute Error Test;
Show( aabs );

Partition Example


dt = Open( "$SAMPLE_DATA/Diabetes.jmp" );
dt << Make Validation Column( Training Set( .6 ), Validation Set( .2 ), Test Set( .2 ), Go );
obj = dt << Partition(
    Y( :Y Binary ),
    X( :Age, :BMI, :BP, :Total Cholesterol, :LDL, :HDL, :TCH, :LTG, :Glucose ),
    Validation( :Validation 2 ),
    Split Best( 2 )
);
aabs = obj << Get Average Absolute Error Test;
Show( aabs );

Uplift Example


dt = Open( "$SAMPLE_DATA/Hair Care Product.jmp" );
dt << Make Validation Column(
    Training Set( .6 ),
    Validation Set( .2 ),
    Test Set( .2 ),
    New Column Name( "Valid1" ),
    Go
);
obj = dt << Uplift(
    Y( :Purchase ),
    X( :Gender, :Age, :Hair Color, :U.S. Region, :Residence ),
    Treatment( :Promotion ),
    Validation( :Valid1 ),
    Split Best( 2 )
);
aabs = obj << Get Average Absolute Error Test;
Show( aabs );

Get Average Absolute Error Training

Syntax: obj << Get Average Absolute Error Training

Description: Returns the Mean Abs Dev statistic for the training set.

Boosted Tree Example


dt = Open( "$SAMPLE_DATA/Diabetes.jmp" );
obj = dt << Boosted Tree(
    Y( :Y Binary ),
    X( :Age, :BMI, :BP, :Total Cholesterol, :LDL, :HDL, :TCH, :LTG, :Glucose ),
    Go
);
aabs = obj << Get Average Absolute Error Training;
Show( aabs );

Bootstrap Forest Example


dt = Open( "$SAMPLE_DATA/Diabetes.jmp" );
obj = dt << Bootstrap Forest(
    Y( :Y Binary ),
    X( :Age, :BMI, :BP, :Total Cholesterol, :LDL, :HDL, :TCH, :LTG, :Glucose ),
    Go
);
aabs = obj << Get Average Absolute Error Training;
Show( aabs );

Partition Example


dt = Open( "$SAMPLE_DATA/Diabetes.jmp" );
obj = dt << Partition(
    Y( :Y Binary ),
    X( :Age, :BMI, :BP, :Total Cholesterol, :LDL, :HDL, :TCH, :LTG, :Glucose ),
    Split Best( 2 )
);
aabs = obj << Get Average Absolute Error Training;
Show( aabs );

Uplift Example


dt = Open( "$SAMPLE_DATA/Hair Care Product.jmp" );
obj = dt << Uplift(
    Y( :Purchase ),
    X( :Gender, :Age, :Hair Color, :U.S. Region, :Residence ),
    Treatment( :Promotion ),
    Split Best( 2 )
);
aabs = obj << Get Average Absolute Error Training;
Show( aabs );

Get Average Absolute Error Validation

Syntax: obj << Get Average Absolute Error Validation

Description: Returns the Mean Abs Dev statistic for the validation set. Available only when using a validation set.

Boosted Tree Example


dt = Open( "$SAMPLE_DATA/Diabetes.jmp" );
obj = dt << Boosted Tree(
    Y( :Y Binary ),
    X( :Age, :BMI, :BP, :Total Cholesterol, :LDL, :HDL, :TCH, :LTG, :Glucose ),
    Validation Portion( 0.2 ),
    Go
);
aabs = obj << Get Average Absolute Error Validation;
Show( aabs );

Bootstrap Forest Example


dt = Open( "$SAMPLE_DATA/Diabetes.jmp" );
obj = dt << Bootstrap Forest(
    Y( :Y Binary ),
    X( :Age, :BMI, :BP, :Total Cholesterol, :LDL, :HDL, :TCH, :LTG, :Glucose ),
    Validation Portion( 0.2 ),
    Go
);
aabs = obj << Get Average Absolute Error Validation;
Show( aabs );

Partition Example


dt = Open( "$SAMPLE_DATA/Diabetes.jmp" );
obj = dt << Partition(
    Y( :Y Binary ),
    X( :Age, :BMI, :BP, :Total Cholesterol, :LDL, :HDL, :TCH, :LTG, :Glucose ),
    Validation Portion( 0.2 ),
    Split Best( 2 )
);
aabs = obj << Get Average Absolute Error Validation;
Show( aabs );

Uplift Example


dt = Open( "$SAMPLE_DATA/Hair Care Product.jmp" );
obj = dt << Uplift(
    Y( :Purchase ),
    X( :Gender, :Age, :Hair Color, :U.S. Region, :Residence ),
    Treatment( :Promotion ),
    Validation( :Validation ),
    Split Best( 2 )
);
aabs = obj << Get Average Absolute Error Validation;
Show( aabs );

Get Average Log Error Test

Syntax: obj << Get Average Log Error Test

Description: Returns the average of -log(p), where p equals the probability of response attributed by the model that the response actually occurred, for the test set. Available only when using a validation set.

Boosted Tree Example


dt = Open( "$SAMPLE_DATA/Diabetes.jmp" );
dt << Make Validation Column( Training Set( .6 ), Validation Set( .2 ), Test Set( .2 ), Go );
obj = dt << Boosted Tree(
    Y( :Y Binary ),
    X( :Age, :BMI, :BP, :Total Cholesterol, :LDL, :HDL, :TCH, :LTG, :Glucose ),
    Validation( :Validation 2 ),
    Go
);
avg = obj << Get Average Log Error Test;
Show( avg );

Bootstrap Forest Example


dt = Open( "$SAMPLE_DATA/Diabetes.jmp" );
dt << Make Validation Column( Training Set( .6 ), Validation Set( .2 ), Test Set( .2 ), Go );
obj = dt << Bootstrap Forest(
    Y( :Y Binary ),
    X( :Age, :BMI, :BP, :Total Cholesterol, :LDL, :HDL, :TCH, :LTG, :Glucose ),
    Validation( :Validation 2 ),
    Go
);
avg = obj << Get Average Log Error Test;
Show( avg );

Partition Example


dt = Open( "$SAMPLE_DATA/Diabetes.jmp" );
dt << Make Validation Column( Training Set( .6 ), Validation Set( .2 ), Test Set( .2 ), Go );
obj = dt << Partition(
    Y( :Y Binary ),
    X( :Age, :BMI, :BP, :Total Cholesterol, :LDL, :HDL, :TCH, :LTG, :Glucose ),
    Validation( :Validation 2 ),
    Method( "Decision Tree" ),
    Go
);
avg = obj << Get Average Log Error Test;
Show( avg );

Uplift Example


dt = Open( "$SAMPLE_DATA/Hair Care Product.jmp" );
dt << Make Validation Column(
    Training Set( .6 ),
    Validation Set( .2 ),
    Test Set( .2 ),
    New Column Name( "Valid1" ),
    Go
);
obj = dt << Uplift(
    Y( :Purchase ),
    X( :Gender, :Age, :Hair Color, :U.S. Region, :Residence ),
    Treatment( :Promotion ),
    Validation( :Valid1 ),
    Split Best( 2 )
);
avg = obj << Get Average Log Error Test;
Show( avg );

Get Average Log Error Training

Syntax: obj << Get Average Log Error Training

Description: Returns the average of -log(p), where p equals the probability of response attributed by the model that the response actually occurred, for the training set.

Boosted Tree Example


dt = Open( "$SAMPLE_DATA/Diabetes.jmp" );
obj = dt << Boosted Tree(
    Y( :Y Binary ),
    X( :Age, :BMI, :BP, :Total Cholesterol, :LDL, :HDL, :TCH, :LTG, :Glucose ),
    Go
);
avg = obj << Get Average Log Error Training;
Show( avg );

Bootstrap Forest Example


dt = Open( "$SAMPLE_DATA/Diabetes.jmp" );
obj = dt << Bootstrap Forest(
    Y( :Y Binary ),
    X( :Age, :BMI, :BP, :Total Cholesterol, :LDL, :HDL, :TCH, :LTG, :Glucose ),
    Go
);
avg = obj << Get Average Log Error Training;
Show( avg );

Partition Example


dt = Open( "$SAMPLE_DATA/Diabetes.jmp" );
obj = dt << Partition(
    Y( :Y Binary ),
    X( :Age, :BMI, :BP, :Total Cholesterol, :LDL, :HDL, :TCH, :LTG, :Glucose ),
    Split Best( 3 )
);
avg = obj << Get Average Log Error Training;
Show( avg );

Uplift Example


dt = Open( "$SAMPLE_DATA/Hair Care Product.jmp" );
obj = dt << Uplift(
    Y( :Purchase ),
    X( :Gender, :Age, :Hair Color, :U.S. Region, :Residence ),
    Treatment( :Promotion ),
    Split Best( 2 )
);
avg = obj << Get Average Log Error Training;
Show( avg );

Get Average Log Error Validation

Syntax: obj << Get Average Log Error Validation

Description: Returns the average of -log(p), where p equals the probability of response attributed by the model that the response actually occurred, for the validation set. Available only when using a validation set.

Boosted Tree Example


dt = Open( "$SAMPLE_DATA/Diabetes.jmp" );
obj = dt << Boosted Tree(
    Y( :Y Binary ),
    X( :Age, :BMI, :BP, :Total Cholesterol, :LDL, :HDL, :TCH, :LTG, :Glucose ),
    Validation Portion( 0.2 ),
    Go
);
avg = obj << Get Average Log Error Validation;
Show( avg );

Bootstrap Forest Example


dt = Open( "$SAMPLE_DATA/Diabetes.jmp" );
obj = dt << Bootstrap Forest(
    Y( :Y Binary ),
    X( :Age, :BMI, :BP, :Total Cholesterol, :LDL, :HDL, :TCH, :LTG, :Glucose ),
    Validation Portion( 0.2 ),
    Go
);
avg = obj << Get Average Log Error Validation;
Show( avg );

Partition Example


dt = Open( "$SAMPLE_DATA/Diabetes.jmp" );
obj = dt << Partition(
    Y( :Y Binary ),
    X( :Age, :BMI, :BP, :Total Cholesterol, :LDL, :HDL, :TCH, :LTG, :Glucose ),
    Validation Portion( 0.2 ),
    Method( "Decision Tree" ),
    Go
);
avg = obj << Get Average Log Error Validation;
Show( avg );

Uplift Example


dt = Open( "$SAMPLE_DATA/Hair Care Product.jmp" );
obj = dt << Uplift(
    Y( :Purchase ),
    X( :Gender, :Age, :Hair Color, :U.S. Region, :Residence ),
    Treatment( :Promotion ),
    Validation( :Validation ),
    Split Best( 2 )
);
avg = obj << Get Average Log Error Validation;
Show( avg );

Get Confusion Matrix Test

Syntax: obj << Get Confusion Matrix Test

Description: Returns the confusion matrix for the test set. Available only when using a validation set.

Boosted Tree Example


dt = Open( "$SAMPLE_DATA/Car Poll.jmp" );
dt << Make Validation Column( Training Set( .6 ), Validation Set( .2 ), Test Set( .2 ), Go );
obj = dt << Boosted Tree(
    Y( :marital status ),
    X( :sex, :age, :country, :type, :size ),
    Validation( :Validation ),
    Go
);
cm = obj << Get Confusion Matrix Test;
Show( cm );

Bootstrap Forest Example


dt = Open( "$SAMPLE_DATA/Car Poll.jmp" );
dt << Make Validation Column( Training Set( .6 ), Validation Set( .2 ), Test Set( .2 ), Go );
obj = dt << Bootstrap Forest(
    Y( :country ),
    X( :sex, :marital status, :age, :type, :size ),
    Validation( :Validation ),
    Go
);
cm = obj << Get Confusion Matrix Test;
Show( cm );

Partition Example


dt = Open( "$SAMPLE_DATA/Car Poll.jmp" );
dt << Make Validation Column( Training Set( .6 ), Validation Set( .2 ), Test Set( .2 ), Go );
obj = dt << Partition(
    Y( :country ),
    X( :sex, :marital status, :age, :type, :size ),
    Validation( :Validation ),
    Split Best( 2 )
);
cm = obj << Get Confusion Matrix Test;
Show( cm );

Uplift Example


dt = Open( "$SAMPLE_DATA/Hair Care Product.jmp" );
dt << Make Validation Column(
    Training Set( .6 ),
    Validation Set( .2 ),
    Test Set( .2 ),
    New Column Name( "Valid1" ),
    Go
);
obj = dt << Uplift(
    Y( :Purchase ),
    X( :Gender, :Age, :Hair Color, :U.S. Region, :Residence ),
    Treatment( :Promotion ),
    Validation( :Valid1 ),
    Split Best( 2 )
);
cm = obj << Get Confusion Matrix Test;
Show( cm );

Get Confusion Matrix Training

Syntax: obj << Get Confusion Matrix Training

Description: Returns the confusion matrix for the training set.

Boosted Tree Example


dt = Open( "$SAMPLE_DATA/Car Poll.jmp" );
dt << Make Validation Column( Training Set( .6 ), Validation Set( .2 ), Test Set( .2 ), Go );
obj = dt << Boosted Tree(
    Y( :marital status ),
    X( :sex, :age, :country, :type, :size ),
    Validation( :Validation ),
    Go
);
cm = obj << Get Confusion Matrix Training;
Show( cm );

Bootstrap Forest Example


dt = Open( "$SAMPLE_DATA/Car Poll.jmp" );
dt << Make Validation Column( Training Set( .6 ), Validation Set( .2 ), Test Set( .2 ), Go );
obj = dt << Bootstrap Forest(
    Y( :country ),
    X( :sex, :marital status, :age, :type, :size ),
    Validation( :Validation ),
    Go
);
cm = obj << Get Confusion Matrix Training;
Show( cm );

Partition Example


dt = Open( "$SAMPLE_DATA/Car Poll.jmp" );
dt << Make Validation Column( Training Set( .6 ), Validation Set( .2 ), Test Set( .2 ), Go );
obj = dt << Partition(
    Y( :country ),
    X( :sex, :marital status, :age, :type, :size ),
    Validation( :Validation ),
    Split Best( 2 )
);
cm = obj << Get Confusion Matrix Training;
Show( cm );

Uplift Example


dt = Open( "$SAMPLE_DATA/Hair Care Product.jmp" );
obj = dt << Uplift(
    Y( :Purchase ),
    X( :Gender, :Age, :Hair Color, :U.S. Region, :Residence ),
    Treatment( :Promotion ),
    Split Best( 2 )
);
cm = obj << Get Confusion Matrix Training;
Show( cm );

Get Confusion Matrix Validation

Syntax: obj << Get Confusion Matrix Validation

Description: Returns the confusion matrix for the validation set. Available only when using a validation set.

Boosted Tree Example


dt = Open( "$SAMPLE_DATA/Car Poll.jmp" );
dt << Make Validation Column( Training Set( .6 ), Validation Set( .2 ), Test Set( .2 ), Go );
obj = dt << Boosted Tree(
    Y( :marital status ),
    X( :sex, :age, :country, :type, :size ),
    Validation( :Validation ),
    Go
);
cm = obj << Get Confusion Matrix Validation;
Show( cm );

Bootstrap Forest Example


dt = Open( "$SAMPLE_DATA/Car Poll.jmp" );
dt << Make Validation Column( Training Set( .6 ), Validation Set( .2 ), Test Set( .2 ), Go );
obj = dt << Bootstrap Forest(
    Y( :country ),
    X( :sex, :marital status, :age, :type, :size ),
    Validation( :Validation ),
    Go
);
cm = obj << Get Confusion Matrix Validation;
Show( cm );

Partition Example


dt = Open( "$SAMPLE_DATA/Car Poll.jmp" );
dt << Make Validation Column( Training Set( .6 ), Validation Set( .2 ), Test Set( .2 ), Go );
obj = dt << Partition(
    Y( :country ),
    X( :sex, :marital status, :age, :type, :size ),
    Validation( :Validation ),
    Split Best( 2 )
);
cm = obj << Get Confusion Matrix Validation;
Show( cm );

Uplift Example


dt = Open( "$SAMPLE_DATA/Hair Care Product.jmp" );
obj = dt << Uplift(
    Y( :Purchase ),
    X( :Gender, :Age, :Hair Color, :U.S. Region, :Residence ),
    Treatment( :Promotion ),
    Validation( :Validation ),
    Split Best( 2 )
);
cm = obj << Get Confusion Matrix Validation;
Show( cm );

Get Confusion Rates Test

Syntax: obj << Get Confusion Rates Test

Description: Returns the confusion rates for the test set. Available only when using a validation set.

Boosted Tree Example


dt = Open( "$SAMPLE_DATA/Car Poll.jmp" );
dt << Make Validation Column( Training Set( .6 ), Validation Set( .2 ), Test Set( .2 ), Go );
obj = dt << Boosted Tree(
    Y( :marital status ),
    X( :sex, :age, :country, :type, :size ),
    Validation( :Validation ),
    Go
);
cr = obj << Get Confusion Rates Test;
Show( cr );

Bootstrap Forest Example


dt = Open( "$SAMPLE_DATA/Car Poll.jmp" );
dt << Make Validation Column( Training Set( .6 ), Validation Set( .2 ), Test Set( .2 ), Go );
obj = dt << Bootstrap Forest(
    Y( :country ),
    X( :sex, :marital status, :age, :type, :size ),
    Validation( :Validation ),
    Go
);
cr = obj << Get Confusion Rates Test;
Show( cr );

Partition Example


dt = Open( "$SAMPLE_DATA/Car Poll.jmp" );
dt << Make Validation Column( Training Set( .6 ), Validation Set( .2 ), Test Set( .2 ), Go );
obj = dt << Partition(
    Y( :country ),
    X( :sex, :marital status, :age, :type, :size ),
    Validation( :Validation ),
    Split Best( 2 )
);
cr = obj << Get Confusion Rates Test;
Show( cr );

Uplift Example


dt = Open( "$SAMPLE_DATA/Hair Care Product.jmp" );
dt << Make Validation Column(
    Training Set( .6 ),
    Validation Set( .2 ),
    Test Set( .2 ),
    New Column Name( "Valid1" ),
    Go
);
obj = dt << Uplift(
    Y( :Purchase ),
    X( :Gender, :Age, :Hair Color, :U.S. Region, :Residence ),
    Treatment( :Promotion ),
    Validation( :Valid1 ),
    Split Best( 2 )
);
cr = obj << Get Confusion Rates Test;
Show( cr );

Get Confusion Rates Training

Syntax: obj << Get Confusion Rates Training

Description: Returns the confusion rates for the training set.

Boosted Tree Example


dt = Open( "$SAMPLE_DATA/Car Poll.jmp" );
dt << Make Validation Column( Training Set( .6 ), Validation Set( .2 ), Test Set( .2 ), Go );
obj = dt << Boosted Tree(
    Y( :marital status ),
    X( :sex, :age, :country, :type, :size ),
    Validation( :Validation ),
    Go
);
cr = obj << Get Confusion Rates Training;
Show( cr );

Bootstrap Forest Example


dt = Open( "$SAMPLE_DATA/Car Poll.jmp" );
dt << Make Validation Column( Training Set( .6 ), Validation Set( .2 ), Test Set( .2 ), Go );
obj = dt << Bootstrap Forest(
    Y( :country ),
    X( :sex, :marital status, :age, :type, :size ),
    Validation( :Validation ),
    Go
);
cr = obj << Get Confusion Rates Training;
Show( cr );

Partition Example


dt = Open( "$SAMPLE_DATA/Car Poll.jmp" );
dt << Make Validation Column( Training Set( .6 ), Validation Set( .2 ), Test Set( .2 ), Go );
obj = dt << Partition(
    Y( :country ),
    X( :sex, :marital status, :age, :type, :size ),
    Validation( :Validation ),
    Split Best( 2 )
);
cr = obj << Get Confusion Rates Training;
Show( cr );

Uplift Example


dt = Open( "$SAMPLE_DATA/Hair Care Product.jmp" );
obj = dt << Uplift(
    Y( :Purchase ),
    X( :Gender, :Age, :Hair Color, :U.S. Region, :Residence ),
    Treatment( :Promotion ),
    Split Best( 2 )
);
cr = obj << Get Confusion Rates Training;
Show( cr );

Get Confusion Rates Validation

Syntax: obj << Get Confusion Rates Validation

Description: Returns the confusion rates for the validation set. Available only when using a validation set.

Boosted Tree Example


dt = Open( "$SAMPLE_DATA/Car Poll.jmp" );
dt << Make Validation Column( Training Set( .6 ), Validation Set( .2 ), Test Set( .2 ), Go );
obj = dt << Boosted Tree(
    Y( :marital status ),
    X( :sex, :age, :country, :type, :size ),
    Validation( :Validation ),
    Go
);
cr = obj << Get Confusion Rates Validation;
Show( cr );

Bootstrap Forest Example


dt = Open( "$SAMPLE_DATA/Car Poll.jmp" );
dt << Make Validation Column( Training Set( .6 ), Validation Set( .2 ), Test Set( .2 ), Go );
obj = dt << Bootstrap Forest(
    Y( :country ),
    X( :sex, :marital status, :age, :type, :size ),
    Validation( :Validation ),
    Go
);
cr = obj << Get Confusion Rates Validation;
Show( cr );

Partition Example


dt = Open( "$SAMPLE_DATA/Car Poll.jmp" );
dt << Make Validation Column( Training Set( .6 ), Validation Set( .2 ), Test Set( .2 ), Go );
obj = dt << Partition(
    Y( :country ),
    X( :sex, :marital status, :age, :type, :size ),
    Validation( :Validation ),
    Split Best( 2 )
);
cr = obj << Get Confusion Rates Validation;
Show( cr );

Uplift Example


dt = Open( "$SAMPLE_DATA/Hair Care Product.jmp" );
obj = dt << Uplift(
    Y( :Purchase ),
    X( :Gender, :Age, :Hair Color, :U.S. Region, :Residence ),
    Treatment( :Promotion ),
    Validation( :Validation ),
    Split Best( 2 )
);
cr = obj << Get Confusion Rates Validation;
Show( cr );

Get Gen RSquare Test

Syntax: obj << Get Gen RSquare Test

Description: Returns the generalized RSquare for the test set. Available only when using a validation set.

Boosted Tree Example


dt = Open( "$SAMPLE_DATA/Car Poll.jmp" );
dt << Make Validation Column( Training Set( .6 ), Validation Set( .2 ), Test Set( .2 ), Go );
obj = dt << Boosted Tree(
    Y( :sex ),
    X( :marital status, :age, :country, :type, :size ),
    Validation( :Validation ),
    Go
);
r = obj << Get Gen RSquare Test;
Show( r );

Bootstrap Forest Example


dt = Open( "$SAMPLE_DATA/Car Poll.jmp" );
dt << Make Validation Column( Training Set( .6 ), Validation Set( .2 ), Test Set( .2 ), Go );
obj = dt << Bootstrap Forest(
    Y( :country ),
    X( :sex, :marital status, :age, :type, :size ),
    Validation( :Validation ),
    Go
);
r = obj << Get Gen RSquare Test;
Show( r );

Partition Example


dt = Open( "$SAMPLE_DATA/Car Poll.jmp" );
dt << Make Validation Column( Training Set( .6 ), Validation Set( .2 ), Test Set( .2 ), Go );
obj = dt << Partition(
    Y( :country ),
    X( :sex, :marital status, :age, :type, :size ),
    Validation( :Validation ),
    Split Best( 2 )
);
r = obj << Get Gen RSquare Test;
Show( r );

Uplift Example


dt = Open( "$SAMPLE_DATA/Hair Care Product.jmp" );
dt << Make Validation Column(
    Training Set( .6 ),
    Validation Set( .2 ),
    Test Set( .2 ),
    New Column Name( "Valid1" ),
    Go
);
obj = dt << Uplift(
    Y( :Purchase ),
    X( :Gender, :Age, :Hair Color, :U.S. Region, :Residence ),
    Treatment( :Promotion ),
    Validation( :Valid1 ),
    Split Best( 2 )
);
r = obj << Get Gen RSquare Test;
Show( r );

Get Gen RSquare Training

Syntax: obj << Get Gen RSquare Training

Description: Returns the generalized RSquare for the training set.

Boosted Tree Example


dt = Open( "$SAMPLE_DATA/Car Poll.jmp" );
dt << Make Validation Column( Training Set( .6 ), Validation Set( .2 ), Test Set( .2 ), Go );
obj = dt << Boosted Tree(
    Y( :sex ),
    X( :marital status, :age, :country, :type, :size ),
    Validation( :Validation ),
    Go
);
r = obj << Get Gen RSquare Training;
Show( r );

Bootstrap Forest Example


dt = Open( "$SAMPLE_DATA/Car Poll.jmp" );
dt << Make Validation Column( Training Set( .6 ), Validation Set( .2 ), Test Set( .2 ), Go );
obj = dt << Bootstrap Forest(
    Y( :country ),
    X( :sex, :marital status, :age, :type, :size ),
    Validation( :Validation ),
    Go
);
r = obj << Get Gen RSquare Training;
Show( r );

Partition Example


dt = Open( "$SAMPLE_DATA/Car Poll.jmp" );
dt << Make Validation Column( Training Set( .6 ), Validation Set( .2 ), Test Set( .2 ), Go );
obj = dt << Partition(
    Y( :country ),
    X( :sex, :marital status, :age, :type, :size ),
    Validation( :Validation ),
    Split Best( 2 )
);
r = obj << Get Gen RSquare Training;
Show( r );

Uplift Example


dt = Open( "$SAMPLE_DATA/Hair Care Product.jmp" );
obj = dt << Uplift(
    Y( :Purchase ),
    X( :Gender, :Age, :Hair Color, :U.S. Region, :Residence ),
    Treatment( :Promotion ),
    Split Best( 2 )
);
r = obj << Get Gen RSquare Training;
Show( r );

Get Gen RSquare Validation

Syntax: obj << Get Gen RSquare Validation

Description: Returns the generalized RSquare for the validation set. Available only when using a validation set.

Boosted Tree Example


dt = Open( "$SAMPLE_DATA/Car Poll.jmp" );
dt << Make Validation Column( Training Set( .6 ), Validation Set( .2 ), Test Set( .2 ), Go );
obj = dt << Boosted Tree(
    Y( :sex ),
    X( :marital status, :age, :country, :type, :size ),
    Validation( :Validation ),
    Go
);
r = obj << Get Gen RSquare Validation;
Show( r );

Bootstrap Forest Example


dt = Open( "$SAMPLE_DATA/Car Poll.jmp" );
dt << Make Validation Column( Training Set( .6 ), Validation Set( .2 ), Test Set( .2 ), Go );
obj = dt << Bootstrap Forest(
    Y( :country ),
    X( :sex, :marital status, :age, :type, :size ),
    Validation( :Validation ),
    Go
);
r = obj << Get Gen RSquare Validation;
Show( r );

Partition Example


dt = Open( "$SAMPLE_DATA/Car Poll.jmp" );
dt << Make Validation Column( Training Set( .6 ), Validation Set( .2 ), Test Set( .2 ), Go );
obj = dt << Partition(
    Y( :country ),
    X( :sex, :marital status, :age, :type, :size ),
    Validation( :Validation ),
    Split Best( 2 )
);
r = obj << Get Gen RSquare Validation;
Show( r );

Uplift Example


dt = Open( "$SAMPLE_DATA/Hair Care Product.jmp" );
obj = dt << Uplift(
    Y( :Purchase ),
    X( :Gender, :Age, :Hair Color, :U.S. Region, :Residence ),
    Treatment( :Promotion ),
    Validation( :Validation ),
    Split Best( 2 )
);
r = obj << Get Gen RSquare Validation;
Show( r );

Get MM SAS DATA Step

Syntax: obj << Get MM SAS DATA Step

Description: Creates SAS code that you can register in the SAS Model Manager and returns it to the Log window.


dt = Open( "$SAMPLE_DATA/Diabetes.jmp" );
obj = dt << Bootstrap Forest(
    Y( :Y ),
    X( :Age, :Gender, :BMI, :BP, :Total Cholesterol, :LDL, :HDL, :TCH, :LTG, :Glucose ),
    Validation( :Validation ),
    Minimum Splits Per Tree( 5 ),
    Portion Bootstrap( 1 ),
    Number Terms( 3 ),
    Number Trees( 25 ),
    Go
);
code = obj << Get MM SAS Data Step;

Get MM Tolerant SAS DATA Step

Syntax: obj << Get MM Tolerant SAS DATA Step

Description: Creates SAS code for data that includes missing values that you can register in the SAS Model Manager and returns it to the Log window.


dt = Open( "$SAMPLE_DATA/Diabetes.jmp" );
obj = dt << Bootstrap Forest(
    Y( :Y ),
    X( :Age, :Gender, :BMI, :BP, :Total Cholesterol, :LDL, :HDL, :TCH, :LTG, :Glucose ),
    Validation( :Validation ),
    Minimum Splits Per Tree( 5 ),
    Portion Bootstrap( 1 ),
    Number Terms( 3 ),
    Number Trees( 25 ),
    Go
);
code = obj << Get MM Tolerant SAS Data Step;

Get Measures

Syntax: obj << Get Measures

Description: Returns summary measures of fit from the model.

JMP Version Added: 16


dt = Open( "$SAMPLE_DATA/Diabetes.jmp" );
obj = dt << Bootstrap Forest(
    Y( :Y ),
    X( :Age, :Gender, :BMI, :BP, :Total Cholesterol, :LDL, :HDL, :TCH, :LTG, :Glucose ),
    Validation( :Validation ),
    Minimum Splits Per Tree( 5 ),
    Portion Bootstrap( 1 ),
    Number Terms( 3 ),
    Number Trees( 25 ),
    Go
);
obj << Get Measures;

Get Microseconds

Syntax: obj << Get Microseconds

Description: Returns the number of microseconds used to complete the analysis.


dt = Open( "$SAMPLE_DATA/Diabetes.jmp" );
obj = dt << Bootstrap Forest(
    Y( :Y ),
    X( :Age, :Gender, :BMI, :BP, :Total Cholesterol, :LDL, :HDL, :TCH, :LTG, :Glucose ),
    Validation( :Validation ),
    Minimum Splits Per Tree( 5 ),
    Portion Bootstrap( 1 ),
    Number Terms( 3 ),
    Number Trees( 25 ),
    Go
);
time = obj << Get Microseconds;
Show( time );

Get Misclassification Rate Test

Syntax: obj << Get Misclassification Rate Test

Description: Returns the misclassification rate for the test set. Available only when using a validation set.

Boosted Tree Example


dt = Open( "$SAMPLE_DATA/Diabetes.jmp" );
dt << Make Validation Column( Training Set( .6 ), Validation Set( .2 ), Test Set( .2 ), Go );
obj = dt << Boosted Tree(
    Y( :Y Binary ),
    X( :Age, :BMI, :BP, :Total Cholesterol, :LDL, :HDL, :TCH, :LTG, :Glucose ),
    Validation( :Validation 2 ),
    Go
);
rate = obj << Get Misclassification Rate Test;
Show( rate );

Bootstrap Forest Example


dt = Open( "$SAMPLE_DATA/Diabetes.jmp" );
dt << Make Validation Column( Training Set( .6 ), Validation Set( .2 ), Test Set( .2 ), Go );
obj = dt << Bootstrap Forest(
    Y( :Y Binary ),
    X( :Age, :BMI, :BP, :Total Cholesterol, :LDL, :HDL, :TCH, :LTG, :Glucose ),
    Validation( :Validation 2 ),
    Go
);
rate = obj << Get Misclassification Rate Test;
Show( rate );

Partition Example


dt = Open( "$SAMPLE_DATA/Diabetes.jmp" );
dt << Make Validation Column( Training Set( .6 ), Validation Set( .2 ), Test Set( .2 ), Go );
obj = dt << Partition(
    Y( :Y Binary ),
    X( :Age, :BMI, :BP, :Total Cholesterol, :LDL, :HDL, :TCH, :LTG, :Glucose ),
    Validation( :Validation 2 ),
    Split Best( 2 )
);
rate = obj << Get Misclassification Rate Test;
Show( rate );

Uplift Example


dt = Open( "$SAMPLE_DATA/Hair Care Product.jmp" );
dt << Make Validation Column(
    Training Set( .6 ),
    Validation Set( .2 ),
    Test Set( .2 ),
    New Column Name( "Valid1" ),
    Go
);
obj = dt << Uplift(
    Y( :Purchase ),
    X( :Gender, :Age, :Hair Color, :U.S. Region, :Residence ),
    Treatment( :Promotion ),
    Validation( :Valid1 ),
    Split Best( 2 )
);
rate = obj << Get Misclassification Rate Test;
Show( rate );

Get Misclassification Rate Training

Syntax: obj << Get Misclassification Rate Training

Description: Returns the misclassification rate for the training set.

Boosted Tree Example


dt = Open( "$SAMPLE_DATA/Diabetes.jmp" );
obj = dt << Boosted Tree(
    Y( :Y Binary ),
    X( :Age, :BMI, :BP, :Total Cholesterol, :LDL, :HDL, :TCH, :LTG, :Glucose ),
    Go
);
rate = obj << Get Misclassification Rate Training;
Show( rate );

Bootstrap Forest Example


dt = Open( "$SAMPLE_DATA/Diabetes.jmp" );
obj = dt << Bootstrap Forest(
    Y( :Y Binary ),
    X( :Age, :BMI, :BP, :Total Cholesterol, :LDL, :HDL, :TCH, :LTG, :Glucose ),
    Go
);
rate = obj << Get Misclassification Rate Training;
Show( rate );

Partition Example


dt = Open( "$SAMPLE_DATA/Diabetes.jmp" );
obj = dt << Partition(
    Y( :Y Binary ),
    X( :Age, :BMI, :BP, :Total Cholesterol, :LDL, :HDL, :TCH, :LTG, :Glucose ),
    Method( "Decision Tree" )
);
obj << Split Best( 2 );
rate = obj << Get Misclassification Rate Training;
Show( rate );

Uplift Example


dt = Open( "$SAMPLE_DATA/Hair Care Product.jmp" );
obj = dt << Uplift(
    Y( :Purchase ),
    X( :Gender, :Age, :Hair Color, :U.S. Region, :Residence ),
    Treatment( :Promotion ),
    Split Best( 2 )
);
rate = obj << Get Misclassification Rate Training;
Show( rate );

Get Misclassification Rate Validation

Syntax: obj << Get Misclassification Rate Validation

Description: Returns the misclassification rate for the validation set. Available only when using a validation set.

Boosted Tree Example


dt = Open( "$SAMPLE_DATA/Diabetes.jmp" );
dt << New Column( "Holdback1", formula( Random Integer( 1, 3 ) ) );
obj = dt << Boosted Tree(
    Y( :Y Binary ),
    X( :Age, :BMI, :BP, :Total Cholesterol, :LDL, :HDL, :TCH, :LTG, :Glucose ),
    validation( :Holdback1 ),
    Go
);
rate = obj << Get Misclassification Rate Validation;
Show( rate );

Bootstrap Forest Example


dt = Open( "$SAMPLE_DATA/Diabetes.jmp" );
dt << New Column( "Holdback1", formula( Random Integer( 1, 3 ) ) );
obj = dt << Bootstrap Forest(
    Y( :Y Binary ),
    X( :Age, :BMI, :BP, :Total Cholesterol, :LDL, :HDL, :TCH, :LTG, :Glucose ),
    validation( :Holdback1 ),
    Go
);
rate = obj << Get Misclassification Rate Validation;
Show( rate );

Partition Example


dt = Open( "$SAMPLE_DATA/Diabetes.jmp" );
dt << New Column( "Holdback1", formula( Random Integer( 1, 3 ) ) );
obj = dt << Partition(
    Y( :Y Binary ),
    X( :Age, :BMI, :BP, :Total Cholesterol, :LDL, :HDL, :TCH, :LTG, :Glucose ),
    validation( :Holdback1 ),
    Method( "Decision Tree" ),
    Go
);
rate = obj << Get Misclassification Rate Validation;
Show( rate );

Uplift Example


dt = Open( "$SAMPLE_DATA/Hair Care Product.jmp" );
obj = dt << Uplift(
    Y( :Purchase ),
    X( :Gender, :Age, :Hair Color, :U.S. Region, :Residence ),
    Treatment( :Promotion ),
    Validation( :Validation ),
    Split Best( 2 )
);
rate = obj << Get Misclassification Rate Validation;
Show( rate );

Get Precision Recall Area Test

Syntax: obj << Get Precision Recall Area Test

Description: Returns the area under the precision-recall curve for the test set. The precision-recall curve must be displayed before the area is computed. Available only when using a validation set.

Boosted Tree Example


dt = Open( "$SAMPLE_DATA/Diabetes.jmp" );
dt << Make Validation Column( Training Set( .6 ), Validation Set( .2 ), Test Set( .2 ), Go );
obj = dt << Boosted Tree(
    Y( :Y Binary ),
    X( :Age, :BMI, :BP, :Total Cholesterol, :LDL, :HDL, :TCH, :LTG, :Glucose ),
    Validation( :Validation 2 ),
    Go
);
obj << Precision Recall Curve;
area = obj << Get Precision Recall Area Test;
Show( area );

Bootstrap Forest Example


dt = Open( "$SAMPLE_DATA/Diabetes.jmp" );
dt << Make Validation Column( Training Set( .6 ), Validation Set( .2 ), Test Set( .2 ), Go );
obj = dt << Bootstrap Forest(
    Y( :Y Binary ),
    X( :Age, :BMI, :BP, :Total Cholesterol, :LDL, :HDL, :TCH, :LTG, :Glucose ),
    Validation( :Validation 2 ),
    Go
);
obj << Precision Recall Curve;
area = obj << Get Precision Recall Area Test;
Show( area );

Partition Example


dt = Open( "$SAMPLE_DATA/Diabetes.jmp" );
dt << Make Validation Column( Training Set( .6 ), Validation Set( .2 ), Test Set( .2 ), Go );
obj = dt << Partition(
    Y( :Y Binary ),
    X( :Age, :BMI, :BP, :Total Cholesterol, :LDL, :HDL, :TCH, :LTG, :Glucose ),
    Validation( :Validation 2 ),
    Method( "Decision Tree" ),
    Go
);
obj << Precision Recall Curve;
area = obj << Get Precision Recall Area Test;
Show( area );

Get Precision Recall Area Training

Syntax: obj << Get Precision Recall Area Training

Description: Returns the area under the precision-recall curve for the training set. The precision-recall curve must be displayed before the area is computed.

Boosted Tree Example


dt = Open( "$SAMPLE_DATA/Diabetes.jmp" );
obj = dt << Boosted Tree(
    Y( :Y Binary ),
    X( :Age, :BMI, :BP, :Total Cholesterol, :LDL, :HDL, :TCH, :LTG, :Glucose ),
    Go
);
obj << Show Tree( 0 );
obj << Precision Recall Curve;
area = obj << Get Precision Recall Area Training;
Show( area );

Bootstrap Forest Example


dt = Open( "$SAMPLE_DATA/Diabetes.jmp" );
obj = dt << Bootstrap Forest(
    Y( :Y Binary ),
    X( :Age, :BMI, :BP, :Total Cholesterol, :LDL, :HDL, :TCH, :LTG, :Glucose ),
    Go
);
obj << Show Tree( 0 );
obj << Precision Recall Curve;
area = obj << Get Precision Recall Area Training;
Show( area );

Partition Example


dt = Open( "$SAMPLE_DATA/Diabetes.jmp" );
obj = dt << Partition(
    Y( :Y Binary ),
    X( :Age, :BMI, :BP, :Total Cholesterol, :LDL, :HDL, :TCH, :LTG, :Glucose ),
    Split Best( 2 )
);
obj << Show Tree( 0 );
obj << Precision Recall Curve;
area = obj << Get Precision Recall Area Training;
Show( area );

Get Precision Recall Area Validation

Syntax: obj << Get Precision Recall Area Validation

Description: Returns the area under the precision-recall curve for the validation set. The precision-recall curve must be displayed before the area is computed. Available only when using a validation set.

Boosted Tree Example


dt = Open( "$SAMPLE_DATA/Diabetes.jmp" );
obj = dt << Boosted Tree(
    Y( :Y Binary ),
    X( :Age, :BMI, :BP, :Total Cholesterol, :LDL, :HDL, :TCH, :LTG, :Glucose ),
    Validation Portion( 0.2 ),
    Go
);
obj << Precision Recall Curve;
area = obj << Get Precision Recall Area Validation;
Show( area );

Bootstrap Forest Example


dt = Open( "$SAMPLE_DATA/Diabetes.jmp" );
obj = dt << Bootstrap Forest(
    Y( :Y Binary ),
    X( :Age, :BMI, :BP, :Total Cholesterol, :LDL, :HDL, :TCH, :LTG, :Glucose ),
    Validation Portion( 0.2 ),
    Go
);
obj << Precision Recall Curve;
area = obj << Get Precision Recall Area Validation;
Show( area );

Partition Example


dt = Open( "$SAMPLE_DATA/Diabetes.jmp" );
obj = dt << Partition(
    Y( :Y Binary ),
    X( :Age, :BMI, :BP, :Total Cholesterol, :LDL, :HDL, :TCH, :LTG, :Glucose ),
    Validation Portion( 0.2 ),
    Method( "Decision Tree" ),
    Go
);
obj << Precision Recall Curve;
area = obj << Get Precision Recall Area Validation;
Show( area );

Get Prediction Formula

Syntax: obj << Get Prediction Formula

Description: Constructs a script to create a prediction formula column and returns it.


dt = Open( "$SAMPLE_DATA/Diabetes.jmp" );
obj = dt << Bootstrap Forest(
    Y( :Y ),
    X( :Age, :Gender, :BMI, :BP, :Total Cholesterol, :LDL, :HDL, :TCH, :LTG, :Glucose ),
    Validation( :Validation ),
    Minimum Splits Per Tree( 5 ),
    Portion Bootstrap( 1 ),
    Number Terms( 3 ),
    Number Trees( 25 ),
    Go
);
obj << Get Prediction Formula;

Get RMS Error Test

Syntax: obj << Get RMS Error Test

Description: Returns the square root of the mean square of the test errors. Available only when using a validation set.


dt = Open( "$SAMPLE_DATA/Diabetes.jmp" );
obj = dt << Bootstrap Forest(
    Y( :Y ),
    X( :Age, :Gender, :BMI, :BP, :Total Cholesterol, :LDL, :HDL, :TCH, :LTG, :Glucose ),
    Validation( :Validation ),
    Minimum Splits Per Tree( 5 ),
    Portion Bootstrap( 1 ),
    Number Terms( 3 ),
    Number Trees( 25 ),
    Go
);
rms = obj << Get RMS Error Test;
Show( rms );

Get RMS Error Training

Syntax: obj << Get RMS Error Training

Description: Returns the square root of the mean square of the training errors.


dt = Open( "$SAMPLE_DATA/Diabetes.jmp" );
obj = dt << Bootstrap Forest(
    Y( :Y ),
    X( :Age, :Gender, :BMI, :BP, :Total Cholesterol, :LDL, :HDL, :TCH, :LTG, :Glucose ),
    Validation( :Validation ),
    Minimum Splits Per Tree( 5 ),
    Portion Bootstrap( 1 ),
    Number Terms( 3 ),
    Number Trees( 25 ),
    Go
);
rms = obj << Get RMS Error Training;
Show( rms );

Get RMS Error Validation

Syntax: obj << Get RMS Error Validation

Description: Returns the square root of the mean square of the validation errors. Available only when using a validation set.


dt = Open( "$SAMPLE_DATA/Diabetes.jmp" );
obj = dt << Bootstrap Forest(
    Y( :Y ),
    X( :Age, :Gender, :BMI, :BP, :Total Cholesterol, :LDL, :HDL, :TCH, :LTG, :Glucose ),
    Validation( :Validation ),
    Minimum Splits Per Tree( 5 ),
    Portion Bootstrap( 1 ),
    Number Terms( 3 ),
    Number Trees( 25 ),
    Go
);
rms = obj << Get RMS Error Validation;
Show( rms );

Get ROC Area Test

Syntax: obj << Get ROC Area Test

Description: Returns the area under the Receiver Operator Characteristic (ROC) curve for the test data. The ROC curve needs to be displayed before the area is computed. Available only when using a validation set.

Boosted Tree Example


dt = Open( "$SAMPLE_DATA/Diabetes.jmp" );
dt << Make Validation Column( Training Set( .6 ), Validation Set( .2 ), Test Set( .2 ), Go );
obj = dt << Boosted Tree(
    Y( :Y Binary ),
    X( :Age, :BMI, :BP, :Total Cholesterol, :LDL, :HDL, :TCH, :LTG, :Glucose ),
    Validation( :Validation 2 ),
    Go
);
obj << ROC Curve;
area = obj << Get ROC Area Test;
Show( area );

Bootstrap Forest Example


dt = Open( "$SAMPLE_DATA/Diabetes.jmp" );
dt << Make Validation Column( Training Set( .6 ), Validation Set( .2 ), Test Set( .2 ), Go );
obj = dt << Bootstrap Forest(
    Y( :Y Binary ),
    X( :Age, :BMI, :BP, :Total Cholesterol, :LDL, :HDL, :TCH, :LTG, :Glucose ),
    Validation( :Validation 2 ),
    Go
);
obj << ROC Curve;
area = obj << Get ROC Area Test;
Show( area );

Partition Example


dt = Open( "$SAMPLE_DATA/Diabetes.jmp" );
dt << Make Validation Column( Training Set( .6 ), Validation Set( .2 ), Test Set( .2 ), Go );
obj = dt << Partition(
    Y( :Y Binary ),
    X( :Age, :BMI, :BP, :Total Cholesterol, :LDL, :HDL, :TCH, :LTG, :Glucose ),
    Validation( :Validation 2 ),
    Method( "Decision Tree" ),
    Go
);
obj << ROC Curve;
area = obj << Get ROC Area Test;
Show( area );

Get ROC Area Training

Syntax: obj << Get ROC Area Training

Description: Returns the area under the Receiver Operator Characteristic (ROC) curve for the training data set. The ROC curve needs to be displayed before the area is computed.

Boosted Tree Example


dt = Open( "$SAMPLE_DATA/Diabetes.jmp" );
obj = dt << Boosted Tree(
    Y( :Y Binary ),
    X( :Age, :BMI, :BP, :Total Cholesterol, :LDL, :HDL, :TCH, :LTG, :Glucose ),
    Go
);
obj << Show Tree( 0 );
obj << ROC Curve;
area = obj << Get ROC Area Training;
Show( area );

Bootstrap Forest Example


dt = Open( "$SAMPLE_DATA/Diabetes.jmp" );
obj = dt << Bootstrap Forest(
    Y( :Y Binary ),
    X( :Age, :BMI, :BP, :Total Cholesterol, :LDL, :HDL, :TCH, :LTG, :Glucose ),
    Go
);
obj << Show Tree( 0 );
obj << ROC Curve;
area = obj << Get ROC Area Training;
Show( area );

Partition Example


dt = Open( "$SAMPLE_DATA/Diabetes.jmp" );
obj = dt << Partition(
    Y( :Y Binary ),
    X( :Age, :BMI, :BP, :Total Cholesterol, :LDL, :HDL, :TCH, :LTG, :Glucose ),
    Split Best( 2 )
);
obj << Show Tree( 0 );
obj << ROC Curve;
area = obj << Get ROC Area Training;
Show( area );

Get ROC Area Validation

Syntax: obj << Get ROC Area Validation

Description: Returns the area under the Receiver Operator Characteristic (ROC) curve for the validation data set. The ROC curve needs to be displayed before the area is computed. Available only when using a validation set.

Boosted Tree Example


dt = Open( "$SAMPLE_DATA/Diabetes.jmp" );
obj = dt << Boosted Tree(
    Y( :Y Binary ),
    X( :Age, :BMI, :BP, :Total Cholesterol, :LDL, :HDL, :TCH, :LTG, :Glucose ),
    Validation Portion( 0.2 ),
    Go
);
obj << ROC Curve;
area = obj << Get ROC Area Validation;
Show( area );

Bootstrap Forest Example


dt = Open( "$SAMPLE_DATA/Diabetes.jmp" );
obj = dt << Bootstrap Forest(
    Y( :Y Binary ),
    X( :Age, :BMI, :BP, :Total Cholesterol, :LDL, :HDL, :TCH, :LTG, :Glucose ),
    Validation Portion( 0.2 ),
    Go
);
obj << ROC Curve;
area = obj << Get ROC Area Validation;
Show( area );

Partition Example


dt = Open( "$SAMPLE_DATA/Diabetes.jmp" );
obj = dt << Partition(
    Y( :Y Binary ),
    X( :Age, :BMI, :BP, :Total Cholesterol, :LDL, :HDL, :TCH, :LTG, :Glucose ),
    Validation Portion( 0.2 ),
    Method( "Decision Tree" ),
    Go
);
obj << ROC Curve;
area = obj << Get ROC Area Validation;
Show( area );

Get RSquare Test

Syntax: obj << Get RSquare Test

Description: Returns the RSquare for the test set. Available only when using a validation set.


dt = Open( "$SAMPLE_DATA/Diabetes.jmp" );
obj = dt << Bootstrap Forest(
    Y( :Y ),
    X( :Age, :Gender, :BMI, :BP, :Total Cholesterol, :LDL, :HDL, :TCH, :LTG, :Glucose ),
    Validation( :Validation ),
    Minimum Splits Per Tree( 5 ),
    Portion Bootstrap( 1 ),
    Number Terms( 3 ),
    Number Trees( 25 ),
    Go
);
r = obj << Get RSquare Test;
Show( r );

Get RSquare Training

Syntax: obj << Get RSquare Training

Description: Returns the RSquare for the training set.


dt = Open( "$SAMPLE_DATA/Diabetes.jmp" );
obj = dt << Bootstrap Forest(
    Y( :Y ),
    X( :Age, :Gender, :BMI, :BP, :Total Cholesterol, :LDL, :HDL, :TCH, :LTG, :Glucose ),
    Validation( :Validation ),
    Minimum Splits Per Tree( 5 ),
    Portion Bootstrap( 1 ),
    Number Terms( 3 ),
    Number Trees( 25 ),
    Go
);
r = obj << Get RSquare Training;
Show( r );

Get RSquare Validation

Syntax: obj << Get RSquare Validation

Description: Returns the RSquare for the validation set. Available only when using a validation set.


dt = Open( "$SAMPLE_DATA/Diabetes.jmp" );
obj = dt << Bootstrap Forest(
    Y( :Y ),
    X( :Age, :Gender, :BMI, :BP, :Total Cholesterol, :LDL, :HDL, :TCH, :LTG, :Glucose ),
    Validation( :Validation ),
    Minimum Splits Per Tree( 5 ),
    Portion Bootstrap( 1 ),
    Number Terms( 3 ),
    Number Trees( 25 ),
    Go
);
r = obj << Get RSquare Validation;
Show( r );

Get SAS DATA Step

Syntax: obj << Get SAS DATA Step

Description: Creates a SAS DATA step to score the data and returns it to the Log window.


dt = Open( "$SAMPLE_DATA/Diabetes.jmp" );
obj = dt << Bootstrap Forest(
    Y( :Y ),
    X( :Age, :Gender, :BMI, :BP, :Total Cholesterol, :LDL, :HDL, :TCH, :LTG, :Glucose ),
    Validation( :Validation ),
    Minimum Splits Per Tree( 5 ),
    Portion Bootstrap( 1 ),
    Number Terms( 3 ),
    Number Trees( 25 ),
    Go
);
code = obj << Get SAS Data Step;

Get Seconds

Syntax: obj << Get Seconds

Description: Returns the number of seconds used to complete the analysis.


dt = Open( "$SAMPLE_DATA/Diabetes.jmp" );
obj = dt << Bootstrap Forest(
    Y( :Y ),
    X( :Age, :Gender, :BMI, :BP, :Total Cholesterol, :LDL, :HDL, :TCH, :LTG, :Glucose ),
    Validation( :Validation ),
    Minimum Splits Per Tree( 5 ),
    Portion Bootstrap( 1 ),
    Number Terms( 3 ),
    Number Trees( 25 ),
    Go
);
time = obj << Get Seconds;
Show( time );

Get Tolerant Prediction Formula

Syntax: obj << Get Tolerant Prediction Formula

Description: Constructs a script to create a tolerant prediction formula column and returns it.


dt = Open( "$SAMPLE_DATA/Diabetes.jmp" );
obj = dt << Bootstrap Forest(
    Y( :Y ),
    X( :Age, :Gender, :BMI, :BP, :Total Cholesterol, :LDL, :HDL, :TCH, :LTG, :Glucose ),
    Validation( :Validation ),
    Minimum Splits Per Tree( 5 ),
    Portion Bootstrap( 1 ),
    Number Terms( 3 ),
    Number Trees( 25 ),
    Go
);
obj << Get Tolerant Prediction Formula;

Get Tolerant SAS DATA Step

Syntax: obj << Get Tolerant SAS DATA Step

Description: Creates a SAS DATA step to score data that includes missing values and returns it to the Log window. Missing values are randomly assigned to a tree branch.


dt = Open( "$SAMPLE_DATA/Diabetes.jmp" );
obj = dt << Bootstrap Forest(
    Y( :Y ),
    X( :Age, :Gender, :BMI, :BP, :Total Cholesterol, :LDL, :HDL, :TCH, :LTG, :Glucose ),
    Validation( :Validation ),
    Minimum Splits Per Tree( 5 ),
    Portion Bootstrap( 1 ),
    Number Terms( 3 ),
    Number Trees( 25 ),
    Go
);
code = obj << Get Tolerant SAS Data Step;

Go

Syntax: obj << Go

Description: Begins iterating after all parameters have been set.


dt = Open( "$SAMPLE_DATA/Diabetes.jmp" );
obj = dt << Bootstrap Forest(
    Y( :Y ),
    X( :Age, :Gender, :BMI, :BP, :Total Cholesterol, :LDL, :HDL, :TCH, :LTG, :Glucose ),
    Validation( :Validation ),
    Minimum Splits Per Tree( 5 ),
    Portion Bootstrap( 1 ),
    Number Terms( 3 ),
    Number Trees( 25 ),
    Go
);

Informative Missing

Syntax: obj = Bootstrap Forest(...Informative Missing( state=0|1 )...)

Description: For categorical variables, treats missing as a category. For continuous variables, treats missing as either low or high, whichever fits better. On by default.

Boosted Tree Example


dt = Open( "$SAMPLE_DATA/Big Class.jmp" );
dt:age[3] = .;
obj = dt << Boosted Tree( Y( :height ), X( :age ), Informative Missing( 0 ), Go );

Bootstrap Forest Example


dt = Open( "$SAMPLE_DATA/Big Class.jmp" );
dt:age[3] = .;
obj = dt << Bootstrap Forest( Y( :height ), X( :age ), Informative Missing( 0 ), Go );

Partition Example


dt = Open( "$SAMPLE_DATA/Big Class.jmp" );
dt:age[3] = .;
obj = dt << Partition( Y( :height ), X( :age ), Informative Missing( 0 ) );
obj << Split Best( 1 );

Uplift Example


dt = Open( "$SAMPLE_DATA/Hair Care Product.jmp" );
dt:Age[3] = .;
obj = dt << Uplift(
    Y( :Purchase ),
    X( :Gender, :Age, :Hair Color, :U.S. Region, :Residence ),
    Treatment( :Promotion ),
    Informative Missing( 0 ),
    Split Best( 3 )
);

Lift Curve

Syntax: obj << Lift Curve( state=0|1 )

Description: Shows or hides the Lift Curve plot. A lift curve plots the lift versus the portion of the observations and provides another view of the predictive ability of a model. If you used validation, a plot is shown for each of the training, validation, and test sets.


dt = Open( "$SAMPLE_DATA/Car Poll.jmp" );
obj = dt << Bootstrap Forest(
    Y( :country ),
    X( :sex, :marital status, :age, :type, :size ),
    Go
);
obj << Lift Curve( 1 );

Make SAS DATA Step

Syntax: obj << Make SAS DATA Step

Description: Creates a SAS DATA step to score the data and returns it to a script window.


dt = Open( "$SAMPLE_DATA/Diabetes.jmp" );
obj = dt << Bootstrap Forest(
    Y( :Y ),
    X( :Age, :Gender, :BMI, :BP, :Total Cholesterol, :LDL, :HDL, :TCH, :LTG, :Glucose ),
    Validation( :Validation ),
    Minimum Splits Per Tree( 5 ),
    Portion Bootstrap( 1 ),
    Number Terms( 3 ),
    Number Trees( 25 ),
    Go
);
obj << Make SAS Data Step;

Make Tolerant SAS DATA Step

Syntax: obj << Make Tolerant SAS DATA Step

Description: Creates a SAS DATA step to score data that includes missing values and returns it to a script window. Missing values are randomly assigned to a tree branch.


dt = Open( "$SAMPLE_DATA/Diabetes.jmp" );
obj = dt << Bootstrap Forest(
    Y( :Y ),
    X( :Age, :Gender, :BMI, :BP, :Total Cholesterol, :LDL, :HDL, :TCH, :LTG, :Glucose ),
    Validation( :Validation ),
    Minimum Splits Per Tree( 5 ),
    Portion Bootstrap( 1 ),
    Number Terms( 3 ),
    Number Trees( 25 ),
    Go
);
obj << Make Tolerant SAS Data Step;

Maximum Number of Terms

Syntax: obj << Maximum Number of Terms( number )

Description: Sets the maximum number of terms to try when running multiple models.


dt = Open( "$SAMPLE_DATA/Diabetes.jmp" );
obj = dt << Bootstrap Forest(
    Y( :Y ),
    X( :Age, :Gender, :BMI, :BP, :Total Cholesterol, :LDL, :HDL, :TCH, :LTG, :Glucose ),
    Minimum Size Split( 10 ),
    Minimum Splits Per Tree( 5 ),
    Portion Bootstrap( 1 ),
    Maximum Number of Terms( 5 ),
    Go
);

Maximum Splits per Tree

Syntax: Maximum Splits Per Tree( number )

Description: Sets the maximum number of splits per tree.


dt = Open( "$SAMPLE_DATA/Diabetes.jmp" );
obj = dt << Bootstrap Forest(
    Y( :Y ),
    X( :Age, :Gender, :BMI, :BP, :Total Cholesterol, :LDL, :HDL, :TCH, :LTG, :Glucose ),
    Minimum Size Split( 10 ),
    Portion Bootstrap( 1 ),
    Maximum Splits Per Tree( 5 ),
    Go
);

Method

Syntax: Method( "Bootstrap Forest" )

Description: Determines the method used for partitioning the data. Decision Tree is the default.


dt = Open( "$SAMPLE_DATA/Diabetes.jmp" );
obj = dt << Bootstrap Forest(
    Y( :Y ),
    X( :Age, :Gender, :BMI, :BP, :Total Cholesterol, :LDL, :HDL, :TCH, :LTG, :Glucose ),
    Validation( :Validation ),
    Minimum Splits Per Tree( 5 ),
    Portion Bootstrap( 1 ),
    Number Terms( 3 ),
    Number Trees( 25 ),
    Go
);

Minimum Size Split

Syntax: Minimum Size Split( number )

Description: Sets the minimum number of observations for considering splits used in the estimate. Default is 5.


dt = Open( "$SAMPLE_DATA/Diabetes.jmp" );
obj = dt << Bootstrap Forest(
    Y( :Y ),
    X( :Age, :Gender, :BMI, :BP, :Total Cholesterol, :LDL, :HDL, :TCH, :LTG, :Glucose ),
    Minimum Size Split( 10 ),
    Minimum Splits Per Tree( 5 ),
    Portion Bootstrap( 1 ),
    Number Terms( 3 ),
    Number Trees( 25 ),
    Go
);

Minimum Splits per Tree

Syntax: Minimum Splits Per Tree( number )

Description: Sets the minimum number of splits per tree. Default is 10.


dt = Open( "$SAMPLE_DATA/Diabetes.jmp" );
obj = dt << Bootstrap Forest(
    Y( :Y ),
    X( :Age, :Gender, :BMI, :BP, :Total Cholesterol, :LDL, :HDL, :TCH, :LTG, :Glucose ),
    Validation( :Validation ),
    Minimum Splits Per Tree( 5 ),
    Portion Bootstrap( 1 ),
    Number Terms( 3 ),
    Number Trees( 25 ),
    Go
);

Multithreading

Syntax: Multithreading( state=0|1 )

Description: Divides up the calculations among the available threads on the machine. On by default.

Boosted Tree Example


dt = Open( "$SAMPLE_DATA/Diabetes.jmp" );
obj = dt << Boosted Tree(
    Y( :Y Binary ),
    X( :Age, :BMI, :BP, :Total Cholesterol, :LDL, :HDL, :TCH, :LTG, :Glucose ),
    Multithreading( 1 ),
    Go
);

Bootstrap Forest Example


dt = Open( "$SAMPLE_DATA/Diabetes.jmp" );
obj = dt << Bootstrap Forest(
    Y( :Y Binary ),
    X( :Age, :BMI, :BP, :Total Cholesterol, :LDL, :HDL, :TCH, :LTG, :Glucose ),
    Multithreading( 1 ),
    Go
);

Partition Example


dt = Open( "$SAMPLE_DATA/Diabetes.jmp" );
obj = dt << Partition(
    Y( :Y Binary ),
    X( :Age, :BMI, :BP, :Total Cholesterol, :LDL, :HDL, :TCH, :LTG, :Glucose ),
    Multithreading( 1 ),
    Split Best( 2 )
);

Number Terms

Syntax: Number Terms( number )

Description: Sets the number of terms sampled per split. Default is floor(nX/4) where "nX" is the number of X columns.


dt = Open( "$SAMPLE_DATA/Diabetes.jmp" );
obj = dt << Bootstrap Forest(
    Y( :Y ),
    X( :Age, :Gender, :BMI, :BP, :Total Cholesterol, :LDL, :HDL, :TCH, :LTG, :Glucose ),
    Validation( :Validation ),
    Minimum Splits Per Tree( 5 ),
    Portion Bootstrap( 1 ),
    Number Terms( 3 ),
    Number Trees( 25 ),
    Go
);

Number Trees

Syntax: Number Trees( number )

Description: Sets the number of trees in the forest. Default is 100.


dt = Open( "$SAMPLE_DATA/Diabetes.jmp" );
obj = dt << Bootstrap Forest(
    Y( :Y ),
    X( :Age, :Gender, :BMI, :BP, :Total Cholesterol, :LDL, :HDL, :TCH, :LTG, :Glucose ),
    Validation( :Validation ),
    Minimum Splits Per Tree( 5 ),
    Portion Bootstrap( 1 ),
    Number Terms( 3 ),
    Number Trees( 25 ),
    Go
);

Ordinal Restricts Order

Syntax: obj = Bootstrap Forest(...Ordinal Restricts Order( state=0|1 )...)

Description: For ordinal columns, considers only splits that preserve order. On by default.

Boosted Tree Example


dt = Open( "$SAMPLE_DATA/Big Class.jmp" );
obj = dt << Boosted Tree( Y( :height ), X( :age ), Ordinal Restricts Order( 1 ), Go );

Bootstrap Forest Example


dt = Open( "$SAMPLE_DATA/Big Class.jmp" );
obj = dt << Bootstrap Forest( Y( :height ), X( :age ), Ordinal Restricts Order( 1 ), Go );

Partition Example


dt = Open( "$SAMPLE_DATA/Big Class.jmp" );
obj = dt << Partition( Y( :height ), X( :age ), Ordinal Restricts Order( 1 ) );
obj << Split Best( 3 );

Uplift Example


dt = Open( "$SAMPLE_DATA/Hair Care Product.jmp" );
obj = dt << Uplift(
    Y( :Purchase ),
    X( :Gender, :Age, :Hair Color, :U.S. Region, :Residence ),
    Treatment( :Promotion ),
    Ordinal Restricts Order( 1 ),
    Split Best( 2 )
);

Plot Actual by Predicted

Syntax: obj << Plot Actual by Predicted( state=0|1 )

Description: Shows or hides a plot using the training data with the predicted values on the X axis and actual values on the Y axis.


dt = Open( "$SAMPLE_DATA/Diabetes.jmp" );
obj = dt << Bootstrap Forest(
    Y( :Y ),
    X( :Age, :Gender, :BMI, :BP, :Total Cholesterol, :LDL, :HDL, :TCH, :LTG, :Glucose ),
    Validation( :Validation ),
    Minimum Splits Per Tree( 5 ),
    Portion Bootstrap( 1 ),
    Number Terms( 3 ),
    Number Trees( 25 ),
    Go
);
obj << Plot Actual by Predicted( 1 );

Portion Bootstrap

Syntax: Portion( fraction )

Description: Sets the portion of the population sampled for the bootstrap sample. Default is 1.


dt = Open( "$SAMPLE_DATA/Diabetes.jmp" );
obj = dt << Bootstrap Forest(
    Y( :Y ),
    X( :Age, :Gender, :BMI, :BP, :Total Cholesterol, :LDL, :HDL, :TCH, :LTG, :Glucose ),
    Validation( :Validation ),
    Minimum Splits Per Tree( 5 ),
    Portion Bootstrap( 1 ),
    Number Terms( 3 ),
    Number Trees( 25 ),
    Go
);

Precision Recall Curve

Syntax: obj << Precision Recall Curve( state=0|1 )

Description: Shows or hides the Precision-Recall Curve plot that contains a curve for each level of the response variable. A precision-recall curve plots the precision values against the recall values at a variety of thresholds. If you used validation, a plot is shown for each of the training, validation, and test sets.


dt = Open( "$SAMPLE_DATA/Car Poll.jmp" );
obj = dt << Bootstrap Forest(
    Y( :country ),
    X( :sex, :marital status, :age, :type, :size ),
    Go
);
obj << Precision Recall Curve( 1 );

Profiler

Syntax: obj << Profiler( state=0|1 )

Description: Shows or hides the prediction profiler, which is used to graphically explore the prediction equation by slicing it one factor at a time. The prediction profiler contains features for optimization.


dt = Open( "$SAMPLE_DATA/Car Poll.jmp" );
obj = dt << Bootstrap Forest(
    Y( :country ),
    X( :sex, :marital status, :age, :type, :size ),
    Go
);
obj << Split Best( 5 );
obj << Profiler( 1 );

Publish Prediction Formula

Syntax: obj << Publish Prediction Formula

Description: Creates prediction formulas and saves them as formula column scripts in the Formula Depot platform.


dt = Open( "$SAMPLE_DATA/Diabetes.jmp" );
obj = dt << Bootstrap Forest(
    Y( :Y ),
    X( :Age, :Gender, :BMI, :BP, :Total Cholesterol, :LDL, :HDL, :TCH, :LTG, :Glucose ),
    Validation( :Validation ),
    Minimum Splits Per Tree( 5 ),
    Portion Bootstrap( 1 ),
    Number Terms( 3 ),
    Number Trees( 25 ),
    Go
);
obj << Publish Prediction Formula;

Publish Tolerant Prediction Formula

Syntax: obj << Publish Tolerant Prediction Formula

Description: Builds a prediction formula that predicts even when there are missing values and publishes it as a formula column script in Formula Depot.


dt = Open( "$SAMPLE_DATA/Diabetes.jmp" );
obj = dt << Bootstrap Forest(
    Y( :Y ),
    X( :Age, :Gender, :BMI, :BP, :Total Cholesterol, :LDL, :HDL, :TCH, :LTG, :Glucose ),
    Validation( :Validation ),
    Minimum Splits Per Tree( 5 ),
    Portion Bootstrap( 1 ),
    Number Terms( 3 ),
    Number Trees( 25 ),
    Go
);
obj << Publish Tolerant Prediction Formula;

ROC Curve

Syntax: obj << ROC Curve( state=0|1 )

Description: Shows or hides the Receiver Operating Characteristic (ROC) curve for each level of the response variable. The ROC curve is a plot of sensitivity versus (1 - specificity). If you used validation, a plot is shown for each of the training, validation, and test sets.


dt = Open( "$SAMPLE_DATA/Car Poll.jmp" );
obj = dt << Bootstrap Forest(
    Y( :country ),
    X( :sex, :marital status, :age, :type, :size ),
    Go
);
obj << ROC Curve( 1 );

Save Cumulative Details

Syntax: obj << Save Cumulative Details

Description: Saves the validation RSquare along with the tree number in a new data table. Available only when using a validation column.


dt = Open( "$SAMPLE_DATA/Diabetes.jmp" );
obj = dt << Bootstrap Forest(
    Y( :Y ),
    X( :Age, :Gender, :BMI, :BP, :Total Cholesterol, :LDL, :HDL, :TCH, :LTG, :Glucose ),
    Validation( :Validation ),
    Minimum Splits Per Tree( 5 ),
    Portion Bootstrap( 1 ),
    Number Terms( 3 ),
    Number Trees( 25 ),
    Go
);
obj << Save Cumulative Details;

Save Predicteds

Syntax: obj << Save Predicteds

Description: Saves the predicted values in a new column in the data table.


dt = Open( "$SAMPLE_DATA/Diabetes.jmp" );
obj = dt << Bootstrap Forest(
    Y( :Y ),
    X( :Age, :Gender, :BMI, :BP, :Total Cholesterol, :LDL, :HDL, :TCH, :LTG, :Glucose ),
    Validation( :Validation ),
    Minimum Splits Per Tree( 5 ),
    Portion Bootstrap( 1 ),
    Number Terms( 3 ),
    Number Trees( 25 ),
    Go
);
obj << Save Predicteds;

Save Prediction Formula

Syntax: obj << Save Prediction Formula

Description: Saves the prediction formula in a new column in the data table.


dt = Open( "$SAMPLE_DATA/Diabetes.jmp" );
obj = dt << Bootstrap Forest(
    Y( :Y ),
    X( :Age, :Gender, :BMI, :BP, :Total Cholesterol, :LDL, :HDL, :TCH, :LTG, :Glucose ),
    Validation( :Validation ),
    Minimum Splits Per Tree( 5 ),
    Portion Bootstrap( 1 ),
    Number Terms( 3 ),
    Number Trees( 25 ),
    Go
);
obj << Save Prediction Formula;

Save Residuals

Syntax: obj << Save Residuals

Description: Saves the residuals in a new column in the data table.


dt = Open( "$SAMPLE_DATA/Diabetes.jmp" );
obj = dt << Bootstrap Forest(
    Y( :Y ),
    X( :Age, :Gender, :BMI, :BP, :Total Cholesterol, :LDL, :HDL, :TCH, :LTG, :Glucose ),
    Validation( :Validation ),
    Minimum Splits Per Tree( 5 ),
    Portion Bootstrap( 1 ),
    Number Terms( 3 ),
    Number Trees( 25 ),
    Go
);
obj << Save Residuals;

Save Tolerant Prediction Formula

Syntax: obj << Save Tolerant Prediction Formula

Description: Save a formula that predicts even when there are missing values in a new column in the data table.


dt = Open( "$SAMPLE_DATA/Diabetes.jmp" );
obj = dt << Bootstrap Forest(
    Y( :Y ),
    X( :Age, :Gender, :BMI, :BP, :Total Cholesterol, :LDL, :HDL, :TCH, :LTG, :Glucose ),
    Validation( :Validation ),
    Minimum Splits Per Tree( 5 ),
    Portion Bootstrap( 1 ),
    Number Terms( 3 ),
    Number Trees( 25 ),
    Go
);
obj << Save Tolerant Prediction Formula;

Set Random Seed

Syntax: obj << Set Random Seed( number )

Description: Specifies a random seed to reproduce the results for future launches of the platform.

Boosted Tree Example


dt = Open( "$SAMPLE_DATA/Diabetes.jmp" );
obj = dt << Boosted Tree(
    Y( :Y Binary ),
    X( :Age, :BMI, :BP, :Total Cholesterol, :LDL, :HDL, :TCH, :LTG, :Glucose ),
    Set Random Seed( 1234 ),
    Go
);

Bootstrap Forest Example


dt = Open( "$SAMPLE_DATA/Diabetes.jmp" );
obj = dt << Bootstrap Forest(
    Y( :Y Binary ),
    X( :Age, :BMI, :BP, :Total Cholesterol, :LDL, :HDL, :TCH, :LTG, :Glucose ),
    Set Random Seed( 1234 ),
    Go
);

Partition Example


dt = Open( "$SAMPLE_DATA/Diabetes.jmp" );
obj = dt << Partition(
    Y( :Y Binary ),
    X( :Age, :BMI, :BP, :Total Cholesterol, :LDL, :HDL, :TCH, :LTG, :Glucose ),
    Set Random Seed( 1234 ),
    Split Best( 2 )
);

Uplift Example


dt = Open( "$SAMPLE_DATA/Hair Care Product.jmp" );
obj = dt << Uplift(
    Y( :Purchase ),
    X( :Gender, :Age, :Hair Color, :U.S. Region, :Residence ),
    Treatment( :Promotion ),
    Set Random Seed( 1234 ),
    Split Best( 2 )
);

Show Trees

Syntax: obj << Show Trees( "None"|"Show names"|"Show names categories"|"Show names categories estimates" )

Description: Shows a list of individual trees, with names only, names and categories, or names, categories and estimates at each node.


dt = Open( "$SAMPLE_DATA/Diabetes.jmp" );
obj = dt << Bootstrap Forest(
    Y( :Y ),
    X( :Age, :Gender, :BMI, :BP, :Total Cholesterol, :LDL, :HDL, :TCH, :LTG, :Glucose ),
    Validation( :Validation ),
    Minimum Splits Per Tree( 5 ),
    Portion Bootstrap( 1 ),
    Number Terms( 3 ),
    Number Trees( 25 ),
    Go
);
obj << Show Trees( Show names categories );
(obj << Report)["Tree Views"] << Close( 0 );
(obj << Report)["Tree12"] << Close( 0 );

Specify Profit Matrix

Syntax: obj << Specify Profit Matrix

Description: Enables you to specify profits or costs associated with correct or incorrect classification decisions.


dt = Open( "$SAMPLE_DATA/Car Poll.jmp" );
obj = dt << Bootstrap Forest(
    Y( :country ),
    X( :sex, :marital status, :age, :type, :size ),
    Specify Profit Matrix(
        [1 -1 -1, -1 1 -1, -1 -1 1, . . .],
        "American",
        "European",
        "Japanese",
        "Undecided"
    ),
    Go
);

Time Limit

Syntax: Time Limit( number )

Description: Sets the time limit for iterating. Number is the limit in seconds to stop adding trees.


dt = Open( "$SAMPLE_DATA/Diabetes.jmp" );
obj = dt << Bootstrap Forest(
    Y( :Y ),
    X( :Age, :Gender, :BMI, :BP, :Total Cholesterol, :LDL, :HDL, :TCH, :LTG, :Glucose ),
    Minimum Size Split( 10 ),
    Minimum Splits Per Tree( 5 ),
    Portion Bootstrap( 1 ),
    Number Terms( 3 ),
    Time Limit( 10 ),
    Go
);

Tuning Design Table

Syntax: Tuning Design Table( "table name" )

Description: A table of tuning parameters to run with, supporting: Number Terms, Minimum Split Per Tree, Maximum Split Per Tree, Number Trees, Portion Bootstrap, Minimum Size Split

Use Excluded Rows for Validation

Syntax: obj = Bootstrap Forest(...Use Excluded Rows for Validation( state=0|1 )...)

Description: Uses the excluded rows in the data table to create a validation set. This option appears in the launch window only if you are using standard JMP and there are excluded rows.

JMP Version Added: 15

Boosted Tree Example


dt = Open( "$SAMPLE_DATA/Diabetes.jmp" );
For Each( {i}, 10 :: 200 :: 10, Row State( i ) = Excluded State( 1 ) );
obj = dt << Boosted Tree(
    Y( :Y ),
    X( :Age, :Gender, :BMI, :BP, :Total Cholesterol, :LDL, :HDL, :TCH, :LTG, :Glucose ),
    Use Excluded Rows for Validation( 1 ),
    Go
);

Bootstrap Forest Example


dt = Open( "$SAMPLE_DATA/Diabetes.jmp" );
For Each( {i}, 10 :: 200 :: 10, Row State( i ) = Excluded State( 1 ) );
obj = dt << Bootstrap Forest(
    Y( :Y ),
    X( :Age, :Gender, :BMI, :BP, :Total Cholesterol, :LDL, :HDL, :TCH, :LTG, :Glucose ),
    Use Excluded Rows for Validation( 1 ),
    Go
);

Partition Example


dt = Open( "$SAMPLE_DATA/Diabetes.jmp" );
For Each( {i}, 10 :: 200 :: 10, Row State( i ) = Excluded State( 1 ) );
obj = dt << Partition(
    Y( :Y ),
    X( :Age, :Gender, :BMI, :BP, :Total Cholesterol, :LDL, :HDL, :TCH, :LTG, :Glucose ),
    Use Excluded Rows for Validation( 1 )
);
obj << Split Best( 5 );

Uplift Example


dt = Open( "$SAMPLE_DATA/Hair Care Product.jmp" );
For Each( {i}, 10 :: 200 :: 10, Row State( i ) = Excluded State( 1 ) );
obj = dt << Uplift(
    Y( :Purchase ),
    X( :Gender, :Age, :Hair Color, :U.S. Region, :Residence ),
    Treatment( :Promotion ),
    Use Excluded Rows for Validation( 1 ),
    Split Best( 2 )
);

Validation Portion

Syntax: obj = Bootstrap Forest(...Validation Portion( fraction=0 )...)

Description: Forms a validation set by randomly selecting rows with each row having probability p (fraction) of being selected. "0" by default.

Boosted Tree Example


dt = Open( "$SAMPLE_DATA/Car Poll.jmp" );
obj = dt << Boosted Tree(
    Y( :marital status ),
    X( :sex, :country, :age, :type, :size ),
    Validation Portion( 0.2 ),
    Go
);

Bootstrap Forest Example


dt = Open( "$SAMPLE_DATA/Car Poll.jmp" );
obj = dt << Bootstrap Forest(
    Y( :country ),
    X( :sex, :marital status, :age, :type, :size ),
    Validation Portion( 0.2 ),
    Go
);

Partition Example


dt = Open( "$SAMPLE_DATA/Car Poll.jmp" );
obj = dt << Partition(
    Y( :country ),
    X( :sex, :marital status, :age, :type, :size ),
    Validation Portion( 0.2 )
);
obj << Split Best( 2 );

Uplift Example


dt = Open( "$SAMPLE_DATA/Hair Care Product.jmp" );
obj = dt << Uplift(
    Y( :Purchase ),
    X( :Gender, :Age, :Hair Color, :U.S. Region, :Residence ),
    Treatment( :Promotion ),
    Validation Portion( 0.2 ),
    Go
);

Shared Item Messages

Action

Syntax: obj << Action

Description: All-purpose trapdoor within a platform to insert expressions to evaluate. Temporarily sets the DisplayBox and DataTable contexts to the Platform.


dt = Open( "$SAMPLE_DATA/Big Class.jmp" );
dt << Bivariate(
    Y( :height ),
    X( :weight ),
    Action( Distribution( Y( :height, :weight ), Histograms Only ) )
);

Apply Preset

Syntax: Apply Preset( preset ); Apply Preset( source, label, <Folder( folder {, folder2, ...} )> )

Description: Apply a previously created preset to the object, updating the options and customizations to match the saved settings.

JMP Version Added: 18

Anonymous preset


dt = Open( "$SAMPLE_DATA/Big Class.jmp" );
obj = dt << Oneway( Y( :height ), X( :sex ), t Test( 1 ) );
preset = obj << New Preset();
dt2 = Open( "$SAMPLE_DATA/Dogs.jmp" );
obj2 = dt2 << Oneway( Y( :LogHist0 ), X( :drug ) );
Wait( 1 );
obj2 << Apply Preset( preset );

Search by name


dt = Open( "$SAMPLE_DATA/Big Class.jmp" );
obj = dt << Oneway( Y( :height ), X( :sex ) );
Wait( 1 );
obj << Apply Preset( "Sample Presets", "Compare Distributions" );

Search within folder(s)


dt = Open( "$SAMPLE_DATA/Big Class.jmp" );
obj = dt << Oneway( Y( :height ), X( :sex ) );
Wait( 1 );
obj << Apply Preset( "Sample Presets", "t-Tests", Folder( "Compare Means" ) );

Automatic Recalc

Syntax: obj << Automatic Recalc( state=0|1 )

Description: Redoes the analysis automatically for exclude and data changes. If the Automatic Recalc option is turned on, you should consider using Wait(0) commands to ensure that the exclude and data changes take effect before the recalculation.


dt = Open( "$SAMPLE_DATA/Diabetes.jmp" );
obj = dt << Bootstrap Forest(
    Y( :Y ),
    X( :Age, :Gender, :BMI, :BP, :Total Cholesterol, :LDL, :HDL, :TCH, :LTG, :Glucose ),
    Validation( :Validation ),
    Minimum Splits Per Tree( 5 ),
    Portion Bootstrap( 1 ),
    Number Terms( 3 ),
    Number Trees( 25 ),
    Go
);
obj << Automatic Recalc( 1 );
dt << Select Rows( 5 ) << Exclude( 1 );

Broadcast

Syntax: obj << Broadcast(message)

Description: Broadcasts a message to a platform. If return results from individual objects are tables, they are concatenated if possible, and the final format is identical to either the result from the Save Combined Table option in a Table Box or the result from the Concatenate option using a Source column. Other than those, results are stored in a list and returned.

JMP Version Added: 18


dt = Open( "$SAMPLE_DATA/Quality Control/Diameter.jmp" );
objs = Control Chart Builder(
    Variables( Subgroup( :DAY ), Y( :DIAMETER ) ),
    By( :OPERATOR )
);
objs[1] << Broadcast( Save Summaries );

Column Switcher

Syntax: obj << Column Switcher(column reference, {column reference, ...}, < Title(title) >, < Close Outline(0|1) >, < Retain Axis Settings(0|1) >, < Layout(0|1) >)

Description: Adds a control panel for changing the platform's variables


dt = Open( "$SAMPLE_DATA/Car Poll.jmp" );
obj = dt << Contingency( Y( :size ), X( :marital status ) );
ColumnSwitcherObject = obj << Column Switcher(
    :marital status,
    {:sex, :country, :marital status}
);

Copy ByGroup Script

Syntax: obj << Copy ByGroup Script

Description: Create a JSL script to produce this analysis, and put it on the clipboard.


dt = Open( "$SAMPLE_DATA/Diabetes.jmp" );
dt << New Column( "_bycol",
    Character,
    Nominal,
    set values( Repeat( {"A", "B"}, N Rows( dt ) )[1 :: N Rows( dt )] )
);
obj = dt << Bootstrap Forest(
    Y( :Y ),
    X( :Age, :Gender, :BMI, :BP, :Total Cholesterol, :LDL, :HDL, :TCH, :LTG, :Glucose ),
    Validation( :Validation ),
    Minimum Splits Per Tree( 5 ),
    Portion Bootstrap( 1 ),
    Number Terms( 3 ),
    Number Trees( 25 ),
    By( _bycol ),
    Go
);
obj[1] << Copy ByGroup Script;

Copy Script

Syntax: obj << Copy Script

Description: Create a JSL script to produce this analysis, and put it on the clipboard.


dt = Open( "$SAMPLE_DATA/Diabetes.jmp" );
obj = dt << Bootstrap Forest(
    Y( :Y ),
    X( :Age, :Gender, :BMI, :BP, :Total Cholesterol, :LDL, :HDL, :TCH, :LTG, :Glucose ),
    Validation( :Validation ),
    Minimum Splits Per Tree( 5 ),
    Portion Bootstrap( 1 ),
    Number Terms( 3 ),
    Number Trees( 25 ),
    Go
);
obj << Copy Script;

Data Table Window

Syntax: obj << Data Table Window

Description: Move the data table window for this analysis to the front.


dt = Open( "$SAMPLE_DATA/Diabetes.jmp" );
obj = dt << Bootstrap Forest(
    Y( :Y ),
    X( :Age, :Gender, :BMI, :BP, :Total Cholesterol, :LDL, :HDL, :TCH, :LTG, :Glucose ),
    Validation( :Validation ),
    Minimum Splits Per Tree( 5 ),
    Portion Bootstrap( 1 ),
    Number Terms( 3 ),
    Number Trees( 25 ),
    Go
);
obj << Data Table Window;

Get By Levels

Syntax: obj << Get By Levels

Description: Returns an associative array mapping the by group columns to their values.

JMP Version Added: 18


dt = Open( "$SAMPLE_DATA/Big Class.jmp" );
biv = dt << Bivariate( X( :height ), Y( :weight ), By( :sex ) );
biv << Get By Levels;

Get ByGroup Script

Syntax: obj << Get ByGroup Script

Description: Creates a script (JSL) to produce this analysis and returns it as an expression.


dt = Open( "$SAMPLE_DATA/Diabetes.jmp" );
dt << New Column( "_bycol",
    Character,
    Nominal,
    set values( Repeat( {"A", "B"}, N Rows( dt ) )[1 :: N Rows( dt )] )
);
obj = dt << Bootstrap Forest(
    Y( :Y ),
    X( :Age, :Gender, :BMI, :BP, :Total Cholesterol, :LDL, :HDL, :TCH, :LTG, :Glucose ),
    Validation( :Validation ),
    Minimum Splits Per Tree( 5 ),
    Portion Bootstrap( 1 ),
    Number Terms( 3 ),
    Number Trees( 25 ),
    By( _bycol ),
    Go
);
t = obj[1] << Get ByGroup Script;
Show( t );

Get Container

Syntax: obj << Get Container

Description: Returns a reference to the container box that holds the content for the object.

General


dt = Open( "$SAMPLE_DATA/Diabetes.jmp" );
obj = dt << Bootstrap Forest(
    Y( :Y ),
    X( :Age, :Gender, :BMI, :BP, :Total Cholesterol, :LDL, :HDL, :TCH, :LTG, :Glucose ),
    Validation( :Validation ),
    Minimum Splits Per Tree( 5 ),
    Portion Bootstrap( 1 ),
    Number Terms( 3 ),
    Number Trees( 25 ),
    Go
);
t = obj << Get Container;
Show( (t << XPath( "//OutlineBox" )) << Get Title );

Platform with Filter


dt = Open( "$SAMPLE_DATA/Big Class.jmp" );
gb = Graph Builder(
    Show Control Panel( 0 ),
    Variables( X( :height ), Y( :weight ) ),
    Elements( Points( X, Y, Legend( 1 ) ), Smoother( X, Y, Legend( 2 ) ) ),
    Local Data Filter(
        Add Filter(
            columns( :age, :sex, :height ),
            Where( :age == {12, 13, 14} ),
            Where( :sex == "F" ),
            Where( :height >= 55 ),
            Display( :age, N Items( 6 ) )
        )
    )
);
New Window( "platform boxes",
    H List Box(
        Outline Box( "Report(platform)", Report( gb ) << Get Picture ),
        Outline Box( "platform << Get Container", (gb << Get Container) << Get Picture )
    )
);

Get Data Table

Syntax: obj << Get Data Table

Description: Returns a reference to the data table.


dt = Open( "$SAMPLE_DATA/Diabetes.jmp" );
obj = dt << Bootstrap Forest(
    Y( :Y ),
    X( :Age, :Gender, :BMI, :BP, :Total Cholesterol, :LDL, :HDL, :TCH, :LTG, :Glucose ),
    Validation( :Validation ),
    Minimum Splits Per Tree( 5 ),
    Portion Bootstrap( 1 ),
    Number Terms( 3 ),
    Number Trees( 25 ),
    Go
);
t = obj << Get Datatable;
Show( N Rows( t ) );

Get Group Platform

Syntax: obj << Get Group Platform

Description: Return the Group Platform object if this platform is part of a Group. Otherwise, returns Empty().


dt = Open( "$SAMPLE_DATA/Big Class.jmp" );
biv = dt << Bivariate( Y( :weight ), X( :height ), By( :sex ) );
group = biv[1] << Get Group Platform;
Wait( 1 );
group << Layout( "Arrange in Tabs" );

Get Script

Syntax: obj << Get Script

Description: Creates a script (JSL) to produce this analysis and returns it as an expression.


dt = Open( "$SAMPLE_DATA/Diabetes.jmp" );
obj = dt << Bootstrap Forest(
    Y( :Y ),
    X( :Age, :Gender, :BMI, :BP, :Total Cholesterol, :LDL, :HDL, :TCH, :LTG, :Glucose ),
    Validation( :Validation ),
    Minimum Splits Per Tree( 5 ),
    Portion Bootstrap( 1 ),
    Number Terms( 3 ),
    Number Trees( 25 ),
    Go
);
t = obj << Get Script;
Show( t );

Get Script With Data Table

Syntax: obj << Get Script With Data Table

Description: Creates a script(JSL) to produce this analysis specifically referencing this data table and returns it as an expression.


dt = Open( "$SAMPLE_DATA/Diabetes.jmp" );
obj = dt << Bootstrap Forest(
    Y( :Y ),
    X( :Age, :Gender, :BMI, :BP, :Total Cholesterol, :LDL, :HDL, :TCH, :LTG, :Glucose ),
    Validation( :Validation ),
    Minimum Splits Per Tree( 5 ),
    Portion Bootstrap( 1 ),
    Number Terms( 3 ),
    Number Trees( 25 ),
    Go
);
t = obj << Get Script With Data Table;
Show( t );

Get Timing

Syntax: obj << Get Timing

Description: Times the platform launch.


dt = Open( "$SAMPLE_DATA/Diabetes.jmp" );
obj = dt << Bootstrap Forest(
    Y( :Y ),
    X( :Age, :Gender, :BMI, :BP, :Total Cholesterol, :LDL, :HDL, :TCH, :LTG, :Glucose ),
    Validation( :Validation ),
    Minimum Splits Per Tree( 5 ),
    Portion Bootstrap( 1 ),
    Number Terms( 3 ),
    Number Trees( 25 ),
    Go
);
t = obj << Get Timing;
Show( t );

Get Web Support

Syntax: obj << Get Web Support

Description: Return a number indicating the level of Interactive HTML support for the display object. 1 means some or all elements are supported. 0 means no support.


dt = Open( "$SAMPLE_DATA/Big Class.jmp" );
obj = dt << Bivariate( Y( :Weight ), X( :Height ) );
s = obj << Get Web Support();
Show( s );

Get Where Expr

Syntax: obj << Get Where Expr

Description: Returns the Where expression for the data subset, if the platform was launched with By() or Where(). Otherwise, returns Empty()

JMP Version Added: 18


dt = Open( "$SAMPLE_DATA/Big Class.jmp" );
biv = dt << Bivariate( X( :height ), Y( :weight ), By( :sex ) );
biv2 = dt << Bivariate( X( :height ), Y( :weight ), Where( :age < 14 & :height > 60 ) );
Show( biv[1] << Get Where Expr, biv2 << Get Where Expr );

Ignore Platform Preferences

Syntax: Ignore Platform Preferences( state=0|1 )

Description: Ignores the current settings of the platform's preferences. The message is ignored when sent to the platform after creation.


dt = Open( "$SAMPLE_DATA/Big Class.jmp" );
dt << Bivariate(
    Ignore Platform Preferences( 1 ),
    Y( :height ),
    X( :weight ),
    Action( Distribution( Y( :height, :weight ), Histograms Only ) )
);

Local Data Filter

Syntax: obj << Local Data Filter

Description: To filter data to specific groups or ranges, but local to this platform


dt = Open( "$SAMPLE_DATA/Car Poll.jmp" );
dt << Distribution(
    Nominal Distribution( Column( :country ) ),
    Local Data Filter(
        Add Filter( columns( :sex ), Where( :sex == "Female" ) ),
        Mode( Show( 1 ), Include( 1 ) )
    )
);

New JSL Preset

Syntax: New JSL Preset( preset )

Description: For testing purposes, create a preset directly from a JSL expression. Like <<New Preset, it will return a Platform Preset that can be applied using <<Apply Preset. But it allows you to specify the full JSL expression for the preset to test outside of normal operation. You will get an Assert on apply if the platform names do not match, but that is expected.

JMP Version Added: 18


dt = Open( "$SAMPLE_DATA/Big Class.jmp" );
obj = dt << Oneway( Y( :Height ), X( :Age ) );
preset = obj << New JSL Preset( Oneway( Y( :A ), X( :B ), Each Pair( 1 ) ) );
Wait( 1 );
obj << Apply Preset( preset );

New Preset

Syntax: obj = New Preset()

Description: Create an anonymous preset representing the options and customizations applied to the object. This object can be passed to Apply Preset to copy the settings to another object of the same type.

JMP Version Added: 18


dt = Open( "$SAMPLE_DATA/Big Class.jmp" );
obj = dt << Oneway( Y( :height ), X( :sex ), t Test( 1 ) );
preset = obj << New Preset();

Paste Local Data Filter

Syntax: obj << Paste Local Data Filter

Description: Apply the local data filter from the clipboard to the current report.


dt = Open( "$SAMPLE_DATA/Cities.jmp" );
dist = Distribution( Continuous Distribution( Column( :POP ) ) );
filter = dist << Local Data Filter(
    Add Filter( columns( :Region ), Where( :Region == "MW" ) )
);
filter << Copy Local Data Filter;
dist2 = Distribution( Continuous Distribution( Column( :Lead ) ) );
Wait( 1 );
dist2 << Paste Local Data Filter;

Redo Analysis

Syntax: obj << Redo Analysis

Description: Rerun this same analysis in a new window. The analysis will be different if the data has changed.


dt = Open( "$SAMPLE_DATA/Diabetes.jmp" );
obj = dt << Bootstrap Forest(
    Y( :Y ),
    X( :Age, :Gender, :BMI, :BP, :Total Cholesterol, :LDL, :HDL, :TCH, :LTG, :Glucose ),
    Validation( :Validation ),
    Minimum Splits Per Tree( 5 ),
    Portion Bootstrap( 1 ),
    Number Terms( 3 ),
    Number Trees( 25 ),
    Go
);
obj << Redo Analysis;

Redo ByGroup Analysis

Syntax: obj << Redo ByGroup Analysis

Description: Rerun this same analysis in a new window. The analysis will be different if the data has changed.


dt = Open( "$SAMPLE_DATA/Diabetes.jmp" );
dt << New Column( "_bycol",
    Character,
    Nominal,
    set values( Repeat( {"A", "B"}, N Rows( dt ) )[1 :: N Rows( dt )] )
);
obj = dt << Bootstrap Forest(
    Y( :Y ),
    X( :Age, :Gender, :BMI, :BP, :Total Cholesterol, :LDL, :HDL, :TCH, :LTG, :Glucose ),
    Validation( :Validation ),
    Minimum Splits Per Tree( 5 ),
    Portion Bootstrap( 1 ),
    Number Terms( 3 ),
    Number Trees( 25 ),
    By( _bycol ),
    Go
);
obj[1] << Redo ByGroup Analysis;

Relaunch Analysis

Syntax: obj << Relaunch Analysis

Description: Opens the platform launch window and recalls the settings that were used to create the report.


dt = Open( "$SAMPLE_DATA/Diabetes.jmp" );
obj = dt << Bootstrap Forest(
    Y( :Y ),
    X( :Age, :Gender, :BMI, :BP, :Total Cholesterol, :LDL, :HDL, :TCH, :LTG, :Glucose ),
    Validation( :Validation ),
    Minimum Splits Per Tree( 5 ),
    Portion Bootstrap( 1 ),
    Number Terms( 3 ),
    Number Trees( 25 ),
    Go
);
obj << Relaunch Analysis;

Relaunch ByGroup

Syntax: obj << Relaunch ByGroup

Description: Opens the platform launch window and recalls the settings that were used to create the report.


dt = Open( "$SAMPLE_DATA/Diabetes.jmp" );
dt << New Column( "_bycol",
    Character,
    Nominal,
    set values( Repeat( {"A", "B"}, N Rows( dt ) )[1 :: N Rows( dt )] )
);
obj = dt << Bootstrap Forest(
    Y( :Y ),
    X( :Age, :Gender, :BMI, :BP, :Total Cholesterol, :LDL, :HDL, :TCH, :LTG, :Glucose ),
    Validation( :Validation ),
    Minimum Splits Per Tree( 5 ),
    Portion Bootstrap( 1 ),
    Number Terms( 3 ),
    Number Trees( 25 ),
    By( _bycol ),
    Go
);
obj[1] << Relaunch ByGroup;

Remove Column Switcher

Syntax: obj << Remove Column Switcher

Description: Removes the most recent Column Switcher that has been added to the platform.


dt = Open( "$SAMPLE_DATA/Car Poll.jmp" );
obj = dt << Contingency( Y( :size ), X( :marital status ) );
ColumnSwitcherObject = obj << Column Switcher(
    :marital status,
    {:sex, :country, :marital status}
);
Wait( 2 );
obj << Remove Column Switcher;

Remove Local Data Filter

Syntax: obj << Remove Local Data Filter

Description: If a local data filter has been created, this removes it and restores the platform to use all the data in the data table directly


dt = Open( "$SAMPLE_DATA/Car Poll.jmp" );
dist = dt << Distribution(
    Nominal Distribution( Column( :country ) ),
    Local Data Filter(
        Add Filter( columns( :sex ), Where( :sex == "Female" ) ),
        Mode( Show( 1 ), Include( 1 ) )
    )
);
Wait( 2 );
dist << remove local data filter;

Render Preset

Syntax: Render Preset( preset )

Description: For testing purposes, show the platform rerun script that would be used when applying a platform preset to the platform in the log. No changes are made to the platform.

JMP Version Added: 18


dt = Open( "$SAMPLE_DATA/Big Class.jmp" );
obj = dt << Oneway( Y( :Height ), X( :Age ) );
obj << Render Preset( Expr( Oneway( Y( :A ), X( :B ), Each Pair( 1 ) ) ) );

Report

Syntax: obj << Report;Report( obj )

Description: Returns a reference to the report object.


dt = Open( "$SAMPLE_DATA/Diabetes.jmp" );
obj = dt << Bootstrap Forest(
    Y( :Y ),
    X( :Age, :Gender, :BMI, :BP, :Total Cholesterol, :LDL, :HDL, :TCH, :LTG, :Glucose ),
    Validation( :Validation ),
    Minimum Splits Per Tree( 5 ),
    Portion Bootstrap( 1 ),
    Number Terms( 3 ),
    Number Trees( 25 ),
    Go
);
r = obj << Report;
t = r[Outline Box( 1 )] << Get Title;
Show( t );

Report View

Syntax: obj << Report View( "Full"|"Summary" )

Description: The report view determines the level of detail visible in a platform report. Full shows all of the detail, while Summary shows only select content, dependent on the platform. For customized behavior, display boxes support a <<Set Summary Behavior message.


dt = Open( "$SAMPLE_DATA/Diabetes.jmp" );
obj = dt << Bootstrap Forest(
    Y( :Y ),
    X( :Age, :Gender, :BMI, :BP, :Total Cholesterol, :LDL, :HDL, :TCH, :LTG, :Glucose ),
    Validation( :Validation ),
    Minimum Splits Per Tree( 5 ),
    Portion Bootstrap( 1 ),
    Number Terms( 3 ),
    Number Trees( 25 ),
    Go
);
obj << Report View( "Summary" );

Save ByGroup Script to Data Table

Syntax: Save ByGroup Script to Data Table( <name>, < <<Append Suffix(0|1)>, < <<Prompt(0|1)>, < <<Replace(0|1)> );

Description: Creates a JSL script to produce this analysis, and save it as a table property in the data table. You can specify a name for the script. The Append Suffix option appends a numeric suffix to the script name, which differentiates the script from an existing script with the same name. The Prompt option prompts the user to specify a script name. The Replace option replaces an existing script with the same name.


dt = Open( "$SAMPLE_DATA/Diabetes.jmp" );
dt << New Column( "_bycol",
    Character,
    Nominal,
    set values( Repeat( {"A", "B"}, N Rows( dt ) )[1 :: N Rows( dt )] )
);
obj = dt << Bootstrap Forest(
    Y( :Y ),
    X( :Age, :Gender, :BMI, :BP, :Total Cholesterol, :LDL, :HDL, :TCH, :LTG, :Glucose ),
    Validation( :Validation ),
    Minimum Splits Per Tree( 5 ),
    Portion Bootstrap( 1 ),
    Number Terms( 3 ),
    Number Trees( 25 ),
    By( _bycol ),
    Go
);
obj[1] << Save ByGroup Script to Data Table;

Save ByGroup Script to Journal

Syntax: obj << Save ByGroup Script to Journal

Description: Create a JSL script to produce this analysis, and add a Button to the journal containing this script.


dt = Open( "$SAMPLE_DATA/Diabetes.jmp" );
dt << New Column( "_bycol",
    Character,
    Nominal,
    set values( Repeat( {"A", "B"}, N Rows( dt ) )[1 :: N Rows( dt )] )
);
obj = dt << Bootstrap Forest(
    Y( :Y ),
    X( :Age, :Gender, :BMI, :BP, :Total Cholesterol, :LDL, :HDL, :TCH, :LTG, :Glucose ),
    Validation( :Validation ),
    Minimum Splits Per Tree( 5 ),
    Portion Bootstrap( 1 ),
    Number Terms( 3 ),
    Number Trees( 25 ),
    By( _bycol ),
    Go
);
obj[1] << Save ByGroup Script to Journal;

Save ByGroup Script to Script Window

Syntax: obj << Save ByGroup Script to Script Window

Description: Create a JSL script to produce this analysis, and append it to the current Script text window.


dt = Open( "$SAMPLE_DATA/Diabetes.jmp" );
dt << New Column( "_bycol",
    Character,
    Nominal,
    set values( Repeat( {"A", "B"}, N Rows( dt ) )[1 :: N Rows( dt )] )
);
obj = dt << Bootstrap Forest(
    Y( :Y ),
    X( :Age, :Gender, :BMI, :BP, :Total Cholesterol, :LDL, :HDL, :TCH, :LTG, :Glucose ),
    Validation( :Validation ),
    Minimum Splits Per Tree( 5 ),
    Portion Bootstrap( 1 ),
    Number Terms( 3 ),
    Number Trees( 25 ),
    By( _bycol ),
    Go
);
obj[1] << Save ByGroup Script to Script Window;

Save Script for All Objects

Syntax: obj << Save Script for All Objects

Description: Creates a script for all report objects in the window and appends it to the current Script window. This option is useful when you have multiple reports in the window.


dt = Open( "$SAMPLE_DATA/Diabetes.jmp" );
obj = dt << Bootstrap Forest(
    Y( :Y ),
    X( :Age, :Gender, :BMI, :BP, :Total Cholesterol, :LDL, :HDL, :TCH, :LTG, :Glucose ),
    Validation( :Validation ),
    Minimum Splits Per Tree( 5 ),
    Portion Bootstrap( 1 ),
    Number Terms( 3 ),
    Number Trees( 25 ),
    Go
);
obj << Save Script for All Objects;

Save Script for All Objects To Data Table

Syntax: obj << Save Script for All Objects To Data Table( <name> )

Description: Saves a script for all report objects to the current data table. This option is useful when you have multiple reports in the window. The script is named after the first platform unless you specify the script name in quotes.

Example 1


dt = Open( "$SAMPLE_DATA/Diabetes.jmp" );
dt << New Column( "_bycol",
    Character,
    Nominal,
    set values( Repeat( {"A", "B"}, N Rows( dt ) )[1 :: N Rows( dt )] )
);
obj = dt << Bootstrap Forest(
    Y( :Y ),
    X( :Age, :Gender, :BMI, :BP, :Total Cholesterol, :LDL, :HDL, :TCH, :LTG, :Glucose ),
    Validation( :Validation ),
    Minimum Splits Per Tree( 5 ),
    Portion Bootstrap( 1 ),
    Number Terms( 3 ),
    Number Trees( 25 ),
    By( _bycol ),
    Go
);
obj[1] << Save Script for All Objects To Data Table;

Example 2


dt = Open( "$SAMPLE_DATA/Diabetes.jmp" );
dt << New Column( "_bycol",
    Character,
    Nominal,
    set values( Repeat( {"A", "B"}, N Rows( dt ) )[1 :: N Rows( dt )] )
);
obj = dt << Bootstrap Forest(
    Y( :Y ),
    X( :Age, :Gender, :BMI, :BP, :Total Cholesterol, :LDL, :HDL, :TCH, :LTG, :Glucose ),
    Validation( :Validation ),
    Minimum Splits Per Tree( 5 ),
    Portion Bootstrap( 1 ),
    Number Terms( 3 ),
    Number Trees( 25 ),
    By( _bycol ),
    Go
);
obj[1] << Save Script for All Objects To Data Table( "My Script" );

Save Script to Data Table

Syntax: Save Script to Data Table( <name>, < <<Prompt(0|1)>, < <<Replace(0|1)> );

Description: Create a JSL script to produce this analysis, and save it as a table property in the data table.


dt = Open( "$SAMPLE_DATA/Diabetes.jmp" );
obj = dt << Bootstrap Forest(
    Y( :Y ),
    X( :Age, :Gender, :BMI, :BP, :Total Cholesterol, :LDL, :HDL, :TCH, :LTG, :Glucose ),
    Validation( :Validation ),
    Minimum Splits Per Tree( 5 ),
    Portion Bootstrap( 1 ),
    Number Terms( 3 ),
    Number Trees( 25 ),
    Go
);
obj << Save Script to Data Table( "My Analysis", <<Prompt( 0 ), <<Replace( 0 ) );

Save Script to Journal

Syntax: obj << Save Script to Journal

Description: Create a JSL script to produce this analysis, and add a Button to the journal containing this script.


dt = Open( "$SAMPLE_DATA/Diabetes.jmp" );
obj = dt << Bootstrap Forest(
    Y( :Y ),
    X( :Age, :Gender, :BMI, :BP, :Total Cholesterol, :LDL, :HDL, :TCH, :LTG, :Glucose ),
    Validation( :Validation ),
    Minimum Splits Per Tree( 5 ),
    Portion Bootstrap( 1 ),
    Number Terms( 3 ),
    Number Trees( 25 ),
    Go
);
obj << Save Script to Journal;

Save Script to Report

Syntax: obj << Save Script to Report

Description: Create a JSL script to produce this analysis, and show it in the report itself. Useful to preserve a printed record of what was done.


dt = Open( "$SAMPLE_DATA/Diabetes.jmp" );
obj = dt << Bootstrap Forest(
    Y( :Y ),
    X( :Age, :Gender, :BMI, :BP, :Total Cholesterol, :LDL, :HDL, :TCH, :LTG, :Glucose ),
    Validation( :Validation ),
    Minimum Splits Per Tree( 5 ),
    Portion Bootstrap( 1 ),
    Number Terms( 3 ),
    Number Trees( 25 ),
    Go
);
obj << Save Script to Report;

Save Script to Script Window

Syntax: obj << Save Script to Script Window

Description: Create a JSL script to produce this analysis, and append it to the current Script text window.


dt = Open( "$SAMPLE_DATA/Diabetes.jmp" );
obj = dt << Bootstrap Forest(
    Y( :Y ),
    X( :Age, :Gender, :BMI, :BP, :Total Cholesterol, :LDL, :HDL, :TCH, :LTG, :Glucose ),
    Validation( :Validation ),
    Minimum Splits Per Tree( 5 ),
    Portion Bootstrap( 1 ),
    Number Terms( 3 ),
    Number Trees( 25 ),
    Go
);
obj << Save Script to Script Window;

SendToByGroup

Syntax: SendToByGroup( {":Column == level"}, command );

Description: Sends platform commands or display customization commands to each level of a by-group.


dt = Open( "$SAMPLE_DATA/Big Class.jmp" );
dt << Distribution(
    By( :Sex ),
    SendToByGroup(
        {:sex == "F"},
        Continuous Distribution( Column( :weight ), Normal Quantile Plot( 1 ) )
    ),
    SendToByGroup( {:sex == "M"}, Continuous Distribution( Column( :weight ) ) )
);

SendToEmbeddedScriptable

Syntax: SendToEmbeddedScriptable( Dispatch( "Outline name", "Element name", command );

Description: SendToEmbeddedScriptable restores settings of embedded scriptable objects.



dt = Open( "$SAMPLE_DATA/Reliability/Fan.jmp" );
dt << Life Distribution(
    Y( :Time ),
    Censor( :Censor ),
    Censor Code( 1 ),
    <<Fit Weibull,
    SendToEmbeddedScriptable(
        Dispatch(
            {"Statistics", "Parametric Estimate - Weibull", "Profilers", "Density Profiler"},
            {1, Confidence Intervals( 0 ), Term Value( Time( 6000, Lock( 0 ), Show( 1 ) ) )}
        )
    )
);

SendToReport

Syntax: SendToReport( Dispatch( "Outline name", "Element name", Element type, command );

Description: Send To Report is used in tandem with the Dispatch command to customize the appearance of a report.


dt = Open( "$SAMPLE_DATA/Big Class.jmp" );
dt << Distribution(
    Nominal Distribution( Column( :age ) ),
    Continuous Distribution( Column( :weight ) ),
    SendToReport( Dispatch( "age", "Distrib Nom Hist", FrameBox, {Frame Size( 178, 318 )} ) )
);

Sync to Data Table Changes

Syntax: obj << Sync to Data Table Changes

Description: Sync with the exclude and data changes that have been made.


dt = Open( "$SAMPLE_DATA/Cities.jmp" );
dist = Distribution( Continuous Distribution( Column( :POP ) ) );
Wait( 1 );
dt << Delete Rows( dt << Get Rows Where( :Region == "W" ) );
dist << Sync To Data Table Changes;

Title

Syntax: obj << Title( "new title" )

Description: Sets the title of the platform.


dt = Open( "$SAMPLE_DATA/Diabetes.jmp" );
obj = dt << Bootstrap Forest(
    Y( :Y ),
    X( :Age, :Gender, :BMI, :BP, :Total Cholesterol, :LDL, :HDL, :TCH, :LTG, :Glucose ),
    Validation( :Validation ),
    Minimum Splits Per Tree( 5 ),
    Portion Bootstrap( 1 ),
    Number Terms( 3 ),
    Number Trees( 25 ),
    Go
);
obj << Title( "My Platform" );

Top Report

Syntax: obj << Top Report

Description: Returns a reference to the root node in the report.


dt = Open( "$SAMPLE_DATA/Diabetes.jmp" );
obj = dt << Bootstrap Forest(
    Y( :Y ),
    X( :Age, :Gender, :BMI, :BP, :Total Cholesterol, :LDL, :HDL, :TCH, :LTG, :Glucose ),
    Validation( :Validation ),
    Minimum Splits Per Tree( 5 ),
    Portion Bootstrap( 1 ),
    Number Terms( 3 ),
    Number Trees( 25 ),
    Go
);
r = obj << Top Report;
t = r[Outline Box( 1 )] << Get Title;
Show( t );

Transform Column

Syntax: obj = <Platform>(... Transform Column(<name>, Formula(<expression>), [Random Seed(<n>)], [Numeric|Character|Expression], [Continuous|Nominal|Ordinal|Unstructured Text], [column properties]) ...)

Description: Create a transform column in the local context of an object, usually a platform. The transform column is active only for the lifetime of the platform.

JMP Version Added: 16


dt = Open( "$SAMPLE_DATA/Big Class.jmp" );
dt << Distribution(
    Transform Column( "age^2", Format( "Fixed Dec", 5, 0 ), Formula( :age * :age ) ),
    Continuous Distribution( Column( :"age^2"n ) )
);

View Web XML

Syntax: obj << View Web XML

Description: Returns the XML code that is used to create the interactive HTML report.


dt = Open( "$SAMPLE_DATA/Big Class.jmp" );
obj = dt << Bivariate( Y( :Weight ), X( :Height ) );
xml = obj << View Web XML;

Window View

Syntax: obj = Bootstrap Forest(...Window View( "Visible"|"Invisible"|"Private" )...)

Description: Set the type of the window to be created for the report. By default a Visible report window will be created. An Invisible window will not appear on screen, but is discoverable by functions such as Window(). A Private window responds to most window messages but is not discoverable and must be addressed through the report object


dt = Open( "$SAMPLE_DATA/Big Class.jmp" );
biv = dt << Bivariate( Window View( "Private" ), Y( :weight ), X( :height ), Fit Line );
eqn = Report( biv )["Linear Fit", Text Edit Box( 1 )] << Get Text;
biv << Close Window;
New Window( "Bivariate Equation",
    Outline Box( "Big Class Linear Fit", Text Box( eqn, <<Set Base Font( "Title" ) ) )
);